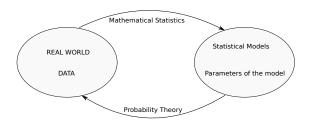
SERIK SAGITOV, Chalmers Tekniska Högskola, February 28, 2014



Chapter 7. Survey sampling

Random sampling 1

Population = set of elements $\{1, 2, ..., N\}$ labeled by values $\{x_1, x_2, ..., x_N\}$. PD = population distribution of x-values.

> Pick at random one element from the population. Its x-value $X \sim PD$ is a random variable with the population distribution.

Types of x-values (data):

continuous, discrete, categorical, dichotomous (2 categories).

General population parameters

population mean $\mu = E(X)$,

population standard deviation $\sigma = \sqrt{\operatorname{Var}(X)}$,

population proportion p (dichotomous data).

Two methods of studying PD and population parameters:

enumeration - expensive, sometimes impossible,

random sample: n random observations (X_1, \ldots, X_n) ,

N is the population size, n is the sample size.

Randomisation is a guard against investigator's biases even unconscious

Sampling with and without replacement

Sampling without replacement produces so called Simple Random Sample:

negative dependence $Cov(X_i, X_j) = -\frac{\sigma^2}{N-1}$, to prove use $X_1 + \ldots + X_N = \text{const.}$ and the addition rule of variance.

Sampling with replacement:

IID sample: Independent Identically Distributed observations, easier to analyse,

good approximation of the simple random sample if n/N is small.

Example. Students heights: height in cm = discrete data, gender = dichotomous data.

$\mathbf{2}$ Point estimates

Population parameter θ estimation uses a point estimate $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$. Sampling distribution of $\hat{\theta}$ around unknown θ : different values $\hat{\theta}$ observed for different samples. Mean square error

$$E(\hat{\theta} - \theta)^2 = \left[E(\hat{\theta}) - \theta\right]^2 + \sigma_{\hat{\theta}}^2$$

 $E(\hat{\theta}) - \theta = \text{systematic error}, \text{ bias, lack of accuracy}; \ \sigma_{\hat{\theta}} = \text{random error}, \text{ lack of precision}.$ Desired properties of point estimates:

 θ is an unbiased estimate of θ , if $E(\theta) = \theta$,

 $\hat{\theta}$ is consistent, if $E(\hat{\theta} - \theta)^2 \to 0$ as $n \to \infty$.

Sample mean $\bar{X} = \frac{X_1 + ... + X_n}{n}$ is an unbiased and consistent estimate of μ

$$\operatorname{Var}(\bar{X}) = \begin{cases} \sigma^2/n & \text{if IID sample} \\ \frac{\sigma^2}{n} (1 - \frac{n-1}{N-1}) & \text{if simple random sample} \end{cases}$$

Finite population correction $1 - \frac{n-1}{N-1}$ can be neglected if sample proportion $\frac{n}{N}$ is small.

Dichotomous dața: $P(X_i = 1) = p$, $P(X_i = 0) = q$, $\mu = p$, $\sigma^2 = pq$, population proportion p. Sample proportion $\hat{p} = \bar{X}$ is an unbiased and consistent estimate of p.

Sample variance $s^2 = \frac{1}{n-1} \sum (X_i - \bar{X})^2$, where s is the sample standard deviation.

Other formulae:

$$s^2 = \frac{n}{n-1}(\overline{X^2} - \overline{X}^2)$$
, where $\overline{X^2} = \frac{1}{n}(X_1^2 + \ldots + X_n^2)$, dichotomous data case $s^2 = \frac{n}{n-1}\hat{p}\hat{q}$.

Sample variance is an unbiased estimate of σ^2

$$E(s^2) = \begin{cases} \sigma^2 & \text{if IID sample} \\ \sigma^2 \frac{N}{N-1} & \text{if simple random sample.} \end{cases}$$

Standard errors of \bar{X} and \hat{p} for simple random sample: $s_{\bar{X}} = \frac{s}{\sqrt{n}} \sqrt{1 - \frac{n}{N}}, \ s_{\hat{p}} = \sqrt{\frac{\hat{p}\hat{q}}{n-1}} \sqrt{1 - \frac{n}{N}}.$

Standard errors for IID sampling
$$s_{\bar{X}} = \frac{s}{\sqrt{n}}, \, s_{\hat{p}} = \sqrt{\frac{\hat{p}\hat{q}}{n-1}}$$

3 Confidence intervals

Approximate sampling distribution $\bar{X} \stackrel{a}{\sim} \mathrm{N}(\underline{\mu}, \frac{\sigma^2}{n})$

$$P(\bar{X} - zs_{\bar{X}} < \mu < \bar{X} + zs_{\bar{X}}) = P(-z < \frac{\bar{X} - \mu}{s_{\bar{X}}} < z) \approx 2(1 - \Phi(z))$$

Approximate 100(1- α)% two-sided CI for μ and p: $\bar{X} \pm z_{\alpha/2} \cdot s_{\bar{X}}$ and $\hat{p} \pm z_{\alpha/2} \cdot s_{\hat{p}}$, if n is large

The higher is confidence level the wider is the CI, the larger is sample the narrower is the CI. 95% CI is a random interval: out of 100 intervals computed for 100 samples $Bin(100,0.95) \approx N(95,(2.18)^2)$ will cover the true value.

4 Stratified random sampling

Population consists of L strata with known L strata fractions $W_1 + \ldots + W_L = 1$ and unknown strata means μ_l and standard deviations σ_l

Population mean $\mu = W_1 \mu_1 + \ldots + W_L \mu_L$,

population variance $\sigma^2 = \overline{\sigma^2} + \sum W_l(\mu_l - \mu)^2$,

average variance $\overline{\sigma^2} = W_1 \sigma_1^2 + \ldots + W_L \sigma_L^2$,

average standard deviation $\bar{\sigma} = W_1 \sigma_1 + \ldots + W_L \sigma_L$.

Stratified random sampling: take L independent samples from each stratum with sample means $\bar{X}_1, \ldots, \bar{X}_L$

Stratified sample mean:
$$\bar{X}_s = W_1 \bar{X}_1 + \ldots + W_L \bar{X}_L$$

 \bar{X}_s is an unbiased and consistent estimate of μ : $\mathrm{E}(\bar{X}_s) = W_1\mathrm{E}(\bar{X}_1) + \ldots + W_L\mathrm{E}(\bar{X}_L) = \mu$. Sample variance $s_{\bar{X}_s}^2 = (W_1s_{\bar{X}_1})^2 + \ldots + (W_Ls_{\bar{X}_L})^2$

Approximate CI for
$$\mu$$
: $\bar{X}_s \pm z_{\alpha/2} \cdot s_{\bar{X}_s}$

Pooled sample mean $\bar{X}_p = \frac{1}{n}(n_1\bar{X}_1 + \ldots + n_L\bar{X}_L)$, polled sample size $n = n_1 + \ldots + n_L$. $\mathrm{E}(\bar{X}_p) = \frac{n_1}{n}\mu_1 + \ldots + \frac{n_L}{n}\mu_L = \mu + \sum (\frac{n_l}{n} - W_l)\mu_l$, $\mathrm{bias}(\bar{X}_p) = \sum (\frac{n_l}{n} - W_l)\mu_l$.

Example. Students heights: L=2, $W_1=W_2=0.5$, compare \bar{X}_s with \bar{X}_p .

Optimal allocation:
$$n_l = n \frac{W_l \sigma_l}{\bar{\sigma}_l}$$
, $Var(\bar{X}_{so}) = \frac{1}{n} \cdot \bar{\sigma}^2$

 \bar{X}_{so} minimizes standard error of X_s . Weakness: usually unknown σ_l and $\bar{\sigma}$.

Proportional allocation:
$$n_l = nW_l$$
, $Var(\bar{X}_{sp}) = \frac{1}{n} \cdot \overline{\sigma^2}$

Compare three unbiased estimates of μ : $\operatorname{Var}(\bar{X}_{so}) \leq \operatorname{Var}(\bar{X}_{sp}) \leq \operatorname{Var}(\bar{X})$. Variability in σ_l across strata:

$$\operatorname{Var}(\bar{X}_{sp}) - \operatorname{Var}(\bar{X}_{so}) = \frac{1}{n}(\overline{\sigma^2} - \bar{\sigma}^2) = \frac{1}{n}\sum W_l(\sigma_l - \bar{\sigma})^2.$$

Variability in means μ_l across strata:

$$\operatorname{Var}(\bar{X}) - \operatorname{Var}(\bar{X}_{sp}) = \frac{1}{n}(\sigma^2 - \overline{\sigma^2}) = \frac{1}{n}\sum W_l(\mu_l - \mu)^2.$$