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Chapter 8. Estimation of parameters and fitting of probability

distributions

Given a parametric model with unknown parameter(s) θ
estimate θ from a random sample (X1, . . . , Xn)

Two basic methods of finding good estimates
1. method of moments, simple, first approximation for
2. max likelihood method, good for large samples

1 Parametric models

Binomial Bin(n, p): number of successes in n Bernoulli trials, f(k) =
(
n
k

)
pkqn−k, 0 ≤ k ≤ n.

Mean and variance µ = np, σ2 = npq.

Hypergeometric Hg(N, n, p): sampling without replacement, f(k) =
(Npk )( Nqn−k)

(Nn)
, 0≤ k ≤ min(n,Np).

Mean and variance µ = np, σ2 = npq(1− n−1
N−1

). Finite population correction FPC=1– n−1
N−1

.

Geometric Geom(p): number of trials until the first success, f(k) = pqk−1, k ≥ 1, µ = 1
p
, σ2 = q

p2 .

Poisson Pois(λ): number of rare events ≈ Bin(n, λ/n), f(k) = λk

k!
e−λ, k ≥ 0, µ = σ2 = λ.

Exponential Exp(λ): Poisson process waiting times f(x) = λe−λx, x > 0, µ = σ = 1
λ
.

Normal N(µ, σ2), CLT: many small independent contributions f(x) = 1√
2πσ

e−
1
2

(x−µ
σ

)2
, −∞ < x <∞.

Gamma(α, λ): shape α and scale parameter λ, f(x) = 1
Γ(α)

λαxα−1e−λx, x ≥ 0, µ = α
λ
, σ2 = α

λ2 .

2 Method of moments

Suppose we are given IID sample (X1, . . . , Xn) from PD(θ1, θ2) with population moments

E(X) = f(θ1, θ2) and E(X2) = g(θ1, θ2).

Method of moments estimates MME (θ̃1, θ̃2): solve equations X̄ = f(θ̃1, θ̃2) and X2 = g(θ̃1, θ̃2).

Example. Bird hops. Data Xi = nunber of hops that a bird does between flights, n = 130:

No. hops 1 2 3 4 5 6 7 8 9 10 11 12 Tot
Frequency 48 31 20 9 6 5 4 2 1 1 2 1 130

Summary statistics
X̄ = total number of hops

number of birds
= 363

130
= 2.79,

X2 = 12 · 48
130

+ 22 · 31
130

+ . . .+ 112 · 2
130

+ 122 · 1
130

= 13.20,

s2 = 130
129

(X2 − X̄2) = 5.47,

sX̄ =
√

5.47
130

= 0.205.

An approximate 95% CI for µ: X̄ ± z0.025·sX̄ = 2.79± 1.96 · 0.205 = 2.79± 0.40.
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Geometric model X ∼ Geom(p): from µ = 1/p we find a MME p̃ = 1/X̄ = 0.358.
Approximate 95% CI for p: ( 1

2.79+0.40
, 1

2.79−0.40
) = (0.31, 0.42).

Model fit: compare the observed frequencies to expected:

j 1 2 3 4 5 6 7+
Oj 48 31 20 9 6 5 11
Ej 46.5 29.9 19.2 12.3 7.9 5.1 9.1

Ej = 130 · (0.642)j−1(0.358) and E7 = 130 − E1 − . . . − E6. The chi-square test statistic is small
X2 = 1.86 saying that the model is good.

3 Maximum Likelihood method

Before sampling the random vector X1, . . . , Xn has a joint distribution f(x1, . . . xn|θ).
After sampling the observed vector (x1, . . . , xn) has a likelihood L(θ) = f(x1, . . . xn|θ), which is a
function of θ.
To illustrate draw three density curves for three parameter values θ1 < θ2 < θ3: the likelihood curve
connects the x-values from the three curves.

The maximum likelihood estimate MLE θ̂ of θ is the value of θ that maximizes L(θ).

For the Bin(n, p) model the sample proportion is MME and MLE of p.

Large sample properties of MLE
If sample is iid, then the likelihood function is given by L(θ) = f(x1|θ) · · · f(xn|θ) due to independence.
This implies for large n

Normal approximation θ̂ ∈ N(θ, 1
nI(θ)

)

Fisher information in a single observation: I(θ) = E[ ∂
∂θ

log f(X|θ)]2 = −E[ ∂
2

∂θ2 log f(X|θ)]
MLE θ̂ is asymptotically unbiased, consistent, and asymptotically efficient (has minimal variance).
Cramer-Rao inequality: if θ∗ is an unbiased estimate of θ, the Var(θ∗) ≥ 1

nI(θ)
.

Approximate 100(1− α)% CI for θ: θ̂ ± zα/2√
nI(θ̂)

Example. Battery lifetime. Lifetimes of five batteries measured in hours
x1 = 0.5, x2 = 14.6, x3 = 5.0, x4 = 7.2, x5 = 1.2

Consider an exponential model X ∼ Exp(λ), where λ is the death rate per hour. MME calculation:
µ = 1/λ, λ̃ = 1/X̄ = 5

28.5
= 0.175.

The likelihood function
L(λ) = λe−λx1λe−λx2λe−λx3λe−λx4λe−λx5 = λne−λ(x1+...+xn) = λ5e−λ·28.5

grows from 0 to 2.2 · 10−7 and then falls down. The likelihood maximum is reached at λ̂ = 0.175.
For the exponential model the MLE λ̂ = 1/X̄ is biased but asymptotically unbiased: E(λ̂) ≈ λ for
large samples, since X̄ ≈ µ due to the Law of Large Numbers.
Fisher information can be computed ∂2

∂λ2 log f(X|λ) = −1/λ2, I(λ) = 1
λ2 . Thus, Var(λ̂) ≈ λ2

n
and we

get an approximate 95% CI for λ: 0.175± 1.960.175√
5

= 0.175± 0.153.
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4 Gamma model example

Male height sample of size n = 24
170,175,176,176,177,178,178,179,179,180,180,180,180,180,181,181,182,183,184,186,187,192,192,199.

Summary statistics: x̄ = 181.46, x2 = 32964.2, x2 − x̄2 = 37.08.
Gamma model X ∼ Gamma(α, λ) is more flexible than the normal model. First we may us the method
of moments:

E(X) = α
λ
, E(X2) = α(α+1)

λ2 imply α̃ = x̄2/(x2 − x̄2) = 887.96, λ̃ = α̃/x̄ = 4.89.
Likelihood function

L(α, λ) =
n∏
i=1

1

Γ(α)
λαxα−1

i e−λxi =
λnα

Γn(α)
(x1 · · ·xn)α−1e−λ(x1+...+xn),

notice that t1 = x1 + . . .+ xn and t2 = x1 · · ·xn are a pair of sufficient statistics (see further).
Maximization of the log-likelihood function: set two derivatives equal to zero

∂
∂α

logL(α, λ) = n log(λ)− nΓ′(α)
Γ(α)

+ log t2,
∂
∂λ

logL(α, λ) = nα
λ
− t1.

Solve numerically two equations
log(α̂/x̄) = − 1

n
log t2 + Γ′(α̂)/Γ(α̂),

λ̂ = α̂/x̄, using MME α̃ = 887.96, λ̃ = 4.89 as the initial values.
Mathematica command

FindRoot[Log[a] == 0.00055+Gamma′[a]/Gamma[a], {a, 887.96}]

gives MLE α̂ = 908.76, λ̂ = 5.01 which are not far from the MME.

5 Parametric bootstrap

What is the standard error of the MLE α̂ = 908.76? Parametric bootstrap approach: simulate
1000 samples of size 24 from Gamma(908.76; 5.01)
find 1000 estimates α̂j and plot a histogram

Use the simulated sampling distribution of α̂ and λ̂

to find ᾱ = 1039.0 and sα̂ =
√

1
999

∑
(α̂j − ᾱ)2 = 331.29

large standard error because of small n = 24
Bootstrap algorithm to find approximate 95% CI: (2α̂− c2, 2α̂− c1)

α̂ → α̂1, . . . , α̂B → sampling distribution of ˆ̂α → 95% brackets c1, c2.
Explanation of the CI formula:

0.95 ≈ P( c1 < ˆ̂α < c2)= P(c1 − α̂ < ˆ̂α− α̂ < c2 − α̂) ≈ P(c1 − α̂ < α̂− α < c2 − α̂)
= P(2α̂− c2 < α < 2α̂− c1).

Matlab commands for the male heights example:
gamrnd(908.76*ones(1000,24), 5.01*ones(1000,24)),
prctile(x,2.5), prctile(x,97.5).

6 Exact confidence intervals

Assumption on the PD
an IID sample (X1, . . . , Xn) is taken from N(µ, σ2) with unspecified parameters µ and σ.
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Exact distributions X̄−µ
sX̄
∼ tn−1 and (n−1)s2

σ2 ∼ χ2
n−1

tn−1-distribution curve looks similar to N(0,1)-curve: symmetric around zero, larger variance = n−1
n−3

.

If Z,Z1, . . . , Zk are N(0,1) and independent, then Z√
(Z2

1+...+Z2
k

)/n
∼ tk.

If Z1, . . . , Zk are N(0,1) and independent, then Z2
1 + . . .+ Z2

k ∼ χ2
k.

Different shapes of χ2
k-distribution: µ = k, σ2 = 2k. It is a Gamma(k/2, 1/2)-distribution.

Exact 100(1− α)% CI for µ: X̄ ± tn−1(α/2) · sX̄

Exact CI for µ is wider than the approximate CI
X̄ ± 1.96 · sX̄ approximate CI for large n
X̄ ± 2.26 · sX̄ exact CI for n = 10
X̄ ± 2.13 · sX̄ exact CI for n = 16
X̄ ± 2.06 · sX̄ exact CI for n = 25
X̄ ± 2.00 · sX̄ exact CI for n = 60

Exact 100(1− α)% CI for σ2:
(

(n−1)s2

χ2
n−1(α/2)

; (n−1)s2

χ2
n−1(1−α/2)

)

A non-symmetric exact confidence interval for σ2. Examples:
(0.47s2, 3.33s2) for n = 10 (0.55s2, 2.40s2) for n = 16
(0.61s2, 1.94s2) for n = 25 (0.72s2, 1.49s2) for n = 60
(0.94s2, 1.07s2) for n = 2000 (0.98s2, 1.02s2) for n = 20000

7 Sufficiency

Definition: T = T (X1, . . . , Xn) is a sufficient statistic for θ, if given T = t conditional distribution of
(X1, . . . , Xn) does not depend on θ.

A sufficient statistic T contains all the information in the sample about θ

Factorization criterium:
if f(x1, . . . , xn|θ) = g(t, θ)h(x1, . . . , xn), then P(X = x|T = t) = h(x)∑

x:T (x)=t
h(x)

independent of θ.

If T is sufficient for θ, the MLE is a function of T

Bernoulli distribution
P(Xi = x) = θx(1− θ)1−x

f(x1, . . . , xn|θ) =
∏n
i=1 θ

xi(1− θ)1−xi = θnx̄(1− θ)n−nx̄.
Sufficient statistic is the number of successes T = nX̄. Factorization: g(t, θ) = θnx̄(1− θ)n−nx̄.

Normal distribution N(µ, σ2) has a two-dimensional sufficient statistic (t1, t2) = (
∑n
i=1 xi,

∑n
i=1 x

2
i )

n∏
i=1

1

σ
√

2π
e−

(xi−µ)2

2σ2 =
1

σn(2π)n/2
e−

t2−2µt1+nµ2

2σ2 .

Rao-Blackwell Theorem. For an estimates θ̂ put θ̃ = E(θ̂|T ). If E(θ̂2) <∞, then MSE(θ̃) ≤ MSE(θ̂).
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