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Chapter 14. Linear least squares

1 Simple linear regression model

A linear model for the random response Y = Y (x) to an independent variable X = x. For a given set
of values (x1, . . . , xn) of the independent variable put

Yi = β0 + β1xi + εi, i = 1, . . . , n,

assuming that the noise vector (ε1, . . . , εn) has independent N(0,σ2) random components. Given the
data (y1, . . . , yn), the model is characterised by the likelihood function of three parameters β0, β1, σ2

L(β0, β1, σ
2) =

n∏
i=1

1√
2πσ

exp
{
− (yi − β0 − β1xi)

2

2σ2

}
= (2π)−n/2σ−ne−

S(β0,β1)

2σ2 ,

where S(β0, β1) =
∑n

i=1(yi − β0 − β1xi)
2. Observe that

n−1S(β0, β1) = n−1

n∑
i=1

(yi − β0 − β1xi)
2 = β2

0 + 2β0β1x̄− 2β0ȳ − 2β1xy + β2
1x

2 + y2.

Least squares estimates
Regression lines: true y = β0 + β1x and fitted y = b0 + b1x. We want to find (b0, b1) such that the
observed responses yi are approximated by the predicted responses ŷi = b0 + b1xi in an optimal way.
Least squares method: find (b0, b1) minimising the sum of squares S(b0, b1) =

∑
(yi − ŷi)2.

From ∂S/∂b0 = 0 and ∂S/∂b1 = 0 we get the so-called Normal Equations:

{
b0 + b1x̄ = ȳ

b0x̄+ b1x2 = xy
implying

 b1 =
xy − x̄ȳ
x2 − x̄2

=
rsy
sx

b0 = ȳ − b1x̄

The least square regression line y = b0 + b1x takes the form y = ȳ + r sy
sx

(x− x̄).

sample variances s2
x = 1

n−1

∑
(xi − x̄)2, s2

y = 1
n−1

∑
(yi − ȳ)2,

sample covariance sxy = 1
n−1

∑
(xi − x̄)(yi − ȳ),

sample correlation coefficient r = sxy
sxsy

.

The least square estimates (b0, b1) are the maximum likelihood estimates of (β0, β1).
The least square estimates (b0, b1) are not robust: outliers exert leverage on the fitted line.

2 Residuals

The estimated regression line predicts the responses to the values of the explanatory variable by
ŷi = ȳ + r sy

sx
(xi − x̄). The noise in the observed responses yi is represented by the residuals

ei = yi − ŷi = yi − ȳ − r sysx (xi − x̄),
e1 + . . .+ en = 0, x1e1 + . . .+ xnen = 0, ŷ1e1 + . . .+ ŷnen = 0.
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Residuals ei have normal distributions with zero mean and

Var(ei) = σ2
(
1−

∑
k(xk − xi)2

n(n− 1)s2
x

)
, Cov(ei, ej) = −σ2 ·

∑
k(xk − xi)(xk − xj)
n(n− 1)s2

x

.

Error sum of squares

SSE =
∑

i e
2
i =

∑
i(yi − ȳ)2 − 2r sy

sx
n(xy − ȳx̄) + r2 s

2
y

s2x

∑
i(xi − x̄)2 = (n− 1)s2

y(1− r2).

Corrected maximum likelihood estimate of σ2: s2 = SSE
n−2

= n−1
n−2

s2
y(1− r2)

Using yi − ȳ = ŷi − ȳ + ei we obtain SST = SSR + SSE,
SST =

∑
i(yi − ȳ)2 = (n− 1)s2

y is the total sum of squares,
SSR =

∑
i(ŷi − ȳ)2 = (n− 1)b2

1s
2
x is the regression sum of squares.

Coefficient of determination r2 = SSR
SST

= 1− SSE
SST

.

Coefficient of determination is the proportion of variation in Y explained by main factor X. Thus r2

has a more transparent meaning than the correlation coefficient r.

To test the normality assumption use the normal distribution plot for the standardized residuals ei
si

,

where si = s
√

1−
∑
k(xk−xi)2
n(n−1)s2x

are the estimated standard deviations of ei.

The expected plot of the standardised residuals versus xi is a horizontal blur (linearity), variance
does not depend on x (homoscedasticity).

Example (flow rate vs stream depth)
For this example with n = 10, the scatter plot looks slightly non-linear. The residual plot gives a
clearer picture having the U-shape. After the log-log transformation, the scatter plot is closer to
linear and the residual plot has a horizontal profile.

3 Confidence intervals and hypothesis testing

The list square estimators (b0, b1) are unbiased and consistent. Due to the normality assumption we
have the following exact distributions

b0 ∼ N(β0, σ
2
0), σ2

0 =
σ2·

∑
x2i

n(n−1)s2x
, b0−β0

sb0
∼ tn−2, sb0 =

s
√∑

x2i

sx
√
n(n−1)

,

b1 ∼ N(β1, σ
2
1), σ2

1 = σ2

(n−1)s2x
, b1−β1

sb1
∼ tn−2, sb1 = s

sx
√
n−1

.

Weak dependence between the two estimators: Cov(b0, b1) = − σ2·x̄
(n−1)s2x

.

Exact 100(1− α)% CI for βi: bi ± tn−2(α
2
) · sbi

Hypothesis testing H0: βi = βi0: test statistic T = bi−βi0
sbi

, exact null distribution T ∼ tn−2.

Model utility test and zero-intercept test
H0: β1 = 0 (no relationship between X and Y ), test statistic T = b1/sb1 , null distribution T ∼ tn−2.
H0: β0 = 0, test statistic T = b0/sb0 , null distribution T ∼ tn−2.
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Intervals for individual observations
Given x predict the value y for the random variable Y = β0+β1 ·x+ε. Its expected value µ = β0+β1 ·x
has the least square estimate µ̂ = b0 + b1 · x.
The standard error of µ̂ is computed as the square root of Var(µ̂) = σ2

n
+ σ2

n−1
· (x−x̄

sx
)2.

Exact 100(1− α)% confidence interval for the mean µ: b0 + b1x± tn−2(α
2
) · s
√

1
n

+ 1
n−1

(x−x̄
sx

)2

Exact 100(1− α)% prediction interval for y: b0 + b1x± tn−2(α
2
) · s
√

1 + 1
n

+ 1
n−1

(x−x̄
sx

)2

Prediction interval has wider limits Var(Y − µ̂) = σ2+Var(µ̂) = σ2(1 + 1
n

+ 1
n−1
· (x−x̄

sx
)2),

since it contains the uncertainty due the noise factors.
Compare these two formulas by drawing the confidence bands around the regression line both for the
individual observation y and the mean µ.

4 Linear regression and ANOVA

Recall the two independent samples case from Chapter 11:
first sample µ1 + ε1, . . . , µ1 + εn,
second sample µ2 + εn+1, . . . , µ2 + εn+m,

where the noise variables are independent and identically distributed εi ∼ N(0, σ2). This setting is
equivalent to the simple linear regression model

Yi = β0 + β1xi + εi, x1 = . . . = xn = 0, xn+1 = . . . = xn+m = 1,

with
µ1 = β0, µ2 = β0 + β1.

The model utility test H0 : β1 = 0 is equivalent to the equality test H0 : µ1 = µ2.
More generally, for the one-way ANOVA setting with I = p levels for the main factor and n = pJ

observations

β0 + εi, i = 1, . . . , J,

β0 + β1 + εi, i = J + 1, . . . , 2J,

. . .

β0 + βp−1 + εi, i = (p− 1)J + 1, . . . , n,

we need a multiple linear regression model

Yi = β0 + β1xi,1 + . . .+ βp−1xi,p−1 + εi, i = 1, . . . , n

with dummy variables xi,j taking values 0 and 1 so that

xi,1 = 1 only for i = J + 1, . . . 2J,

xi,2 = 1 only for i = 2J + 1, . . . 3J,

. . .

xi,p−1 = 1 only for i = (p− 1)J + 1, . . . , n.
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5 Multiple linear regression

Consider a linear regression model

Y = β0 + β1x1 + . . .+ βp−1xp−1 + ε, ε ∼ N(0, σ2)

with p− 1 explanatory variables and a homoscedastic noise. This is an extension of the simple linear
regression model with p = 2.

The corresponding data set consists of observations (y1, . . . , yn) with n > p, which are realisations
of n independent random variables

Y1 = β0 + β1x1,1 + . . .+ βp−1x1,p−1 + ε1,

. . .

Yn = β0 + β1xn,1 + . . .+ βp−1xn,p−1 + εn.

In the matrix notation the column vector y = (y1, . . . , yn)T is a realisation of Y = Xβ + ε, where

Y = (Y1, . . . , Yn)T , β = (β0, . . . , βp−1)T , ε = (ε1, . . . , εn)T ,

are column vectors, and X is the so called design matrix

X =

 1 x1,1 . . . x1,p−1

. . . . . . . . . . . .
1 xn,1 . . . xn,p−1


assumed to have rank p. Least square estimates b = (b0, . . . , bp−1)T minimise S(b) = ‖y − Xb‖2,
where ‖a‖ is the length of a vector a. Solving the normal equations XTXb = XTy we find the least
squares estimates being

b = MXTy, M = (XTX)−1.

Least squares multiple regression: predicted responses ŷ = Xb = Py, where P = XMXT .

Covariance matrix for the least square estimates Σbb = σ2M is a p × p matrix with elements
Cov(bi, bj). The vector of residuals e = y− ŷ = (I−P)y have a covariance matrix Σee = σ2(I−P).

An unbiased estimate of σ2 is given by s2 = SSE
n−p , where SSE = ‖e‖2.

The standard error of bi is computed as sbj = s
√
mjj, where mjj is a diagonal element of M.

Exact sampling distributions
bj−βj
sbj
∼ tn−p, j = 1, . . . , p− 1.

Inspect the normal probability plot for the standardised residuals yi−ŷi
s
√

1−pii
, where pii are the diagonal

elements of P.

Coefficient of multiple determination can be computed similarly to the simple linear regression
model as R2 = 1 − SSE

SST
, where SST = (n − 1)s2

y. The problem with R2 is that it increases even if
irrelevant variables are added to the model. To punish for irrelevant variables it is better to use the
adjusted coefficient of multiple determination
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R2
a = 1− n−1

n−p ·
SSE
SST

= 1− s2

s2y
.

The adjustment factor n−1
n−p gets larger for the larger values of p.

Example (flow rate vs stream depth)
The multiple linear regression framework works for the quadratic model y = β0 + β1x + β2x

2. The
residuals show no sign of systematic misfit. Linear and quadratic terms are statistically significant

Coefficient Estimate Standard Error t Value
β0 1.68 1.06 1.52
β1 −10.86 4.52 −2.40
β2 23.54 4.27 5.51

Emperical relationship developed in a region might break down,
if extrapolated to a wider region in which no data been observed

Example (catheter length)
Doctors want predictions on heart catheter length depending on child’s height and weight. The pair-
wise scatterplots for the data of size n = 12 suggests two simple linear regressions

Estimate Height t Value Weight t Value
b0(sb0) 12.1(4.3) 2.8 25.6(2.0) 12.8
b1(sb1) 0.60(0.10) 6.0 0.28(0.04) 7.0
s 4.0 3.8
r2(R2

a) 0.78 (0.76) 0.80 (0.78)

The plots of standardised residuals do not contradict the normality assumptions.

The simple regression models should be compared to the multiple regression model
L = β0 + β1H + β2W , which gives

b0 = 21, sb0 = 8.8, b0/sb0 = 2.39,
b1 = 0.20, sb1 = 0.36, b1/sb1 = 0.56,
b2 = 0.19, sb2 = 0.17, b2/sb2 = 1.12,
s = 3.9, R2 = 0.81, R2

a = 0.77.

In contrast to the simple models, we can not reject neither H1 : β1 = 0 nor H2 : β2 = 0. This paradox is
explained by different meaning of the slope parameters in the simple and multiple regression models.
In the multiple model β1 is the expected change in L when H increased by one unit and W held
constant.

Collinearity problem: height and weight have a strong linear relationship. The fitted plane has a
well resolved slope along the line about which the (H,W ) points fall and poorly resolved slopes along
the H and W axes.

Conclusion: since the simple model L = β0 + β1W gives the highest adjusted coefficient of de-
termination, there is little or no gain from adding H to the regression model model with a single
explanatory variable W .
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