SERIK SAGITOV, Chalmers and GU, January 27, 2016

# Chapter 10. Summarising data

# 1 Empirical probability distribution

Consider an IID sample  $(X_1, \ldots, X_n)$  from the population distribution  $F(x) = P(X \le x)$ .

Empirical distribution function  $F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i \le x\}}.$ 

For a fixed x,  $F_n(x)$  is the sample proportion estimating the population proportion F(x).  $F_n(\cdot)$  is a cumulative distribution function with mean  $\bar{X}$  and variance  $\frac{n-1}{n}s^2$ .

If the data describes life lengths, then it is more convenient to use the empirical survival function  $S_n(x) = 1 - F_n(x)$ , the proportion of the data greater than x. If the lifelength T has distribution function  $F(t) = P(T \le t)$ , then its survival function is S(t) = P(T > t) = 1 - F(t).

Hazard function  $h(t) = \frac{f(t)}{S(t)}$ , where f(t) = F'(t) is the probability density function.

The hazard function is the mortality rate at age t:

$$P(t < T \le t + \delta | T \ge t) = \frac{F(t + \delta) - F(t)}{S(t)} \sim \delta \cdot h(t), \quad \delta \to 0.$$

The hazard function can be viewed as the negative of the slope of the log survival function:

$$h(t) = -\frac{d}{dt}\log S(t) = -\frac{d}{dt}\log(1 - F(t)).$$

**Example** (Guinea pigs)

Guinea pigs were infected with tubercle bacillus, then divided in 5 treatment groups and one control group. The survival times were recorded. The data is illustrated by two graphs: one for the survival functions and the other for the log-survival functions.

A constant hazard rate  $h(t) = \lambda$  corresponds to the exponential distribution  $\text{Exp}(\lambda)$ .

## 2 Density estimation

A histogram displays the observed counts  $O_j = \sum_{i=1}^n \mathbb{1}_{\{X_i \in \text{cell}_j\}}$  over the adjacent cells of width h. The choice of a balanced width h is important: smaller h give ragged profiles, larger h give obscured profiles.

Put  $f_h(x) = \frac{1}{nh}O_j$  for x belonging to the cell j, and notice that  $\int f_h(x)dx = \frac{1}{nh}\sum_j O_j = 1$ . The scaled histogram given by the graph of  $f_h(x)$  is a density estimate.

Kernel density estimate with bandwidth h produces a smooth curve

$$f_h(x) = \frac{1}{nh} \sum \phi(\frac{x - X_i}{h})$$
, where  $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ .

**Example** (male heights)

Let = column of 24 male heights. For a given bandwidth h, the following matlab code produces a plot for a kernel density estimate  $\frac{1}{2}$ 

 $\begin{array}{l} x = 160:0.1:210; \ L = length(x); \\ f = normpdf((ones(24,1)^*x - hm^*ones(1,L))/h); \\ fh = sum(f)/(24^*h); \ plot(x,fh) \end{array}$ 

The stem-and-leaf plot for the 24 male heights indicates the distribution shape plus gives the full numerical information:

17:056678899 18:0000112346 19:229

# 3 Q-Q plots

The inverse of the cumulative distribution function F is called the quantile function  $Q = F_{-1}$ . The quantile function  $\Phi_{-1}$  for the standard normal distribution  $\Phi$  is called the profit function (from PROBability unIT).

For a given distribution F and  $0 \le p \le 1$ , the p-quantile is Q(p).

Special quantiles:

median M = Q(0.5), lower quartile Q(0.25), upper quartile Q(0.75).

Quantile  $x_p$  cuts off proportion p of smallest values of a random variable X with  $P(X \le x) = F(x)$ :  $P(X \le x_p) = F(x_p) = F(Q(p)) = p.$ 

The ordered sample values  $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$  are the jump points for the empirical distribution function. Since

 $F_n(X_{(k)}) = \frac{k}{n}$  and  $F_n(X_{(k)} - \epsilon) = \frac{k-1}{n}$ ,  $X_{(k)}$  is called the empirical  $(\frac{k-0.5}{n})$ -quantile.

Suppose we have two independent samples  $(X_1, \ldots, X_n)$  and  $(Y_1, \ldots, Y_n)$  with population distribution functions  $F_1$  and  $F_2$ . A relevant null hypothesis  $H_0$ :  $F_1 \equiv F_2$  is equivalent to  $H_0$ :  $Q_1 \equiv Q_2$ . It can be tested graphically using a Q-Q plot.

The Q-Q plot is a scatter plot of n dots with coordinates  $(X_{(k)}, Y_{(k)})$ .

We accept the  $H_0$  of equal distributions if the scatter plot is close to the bisector, that is when we have almost equal quantiles.

More generally, if  $P(X \le x) = P(Y \le a + bx)$ , in other words,  $Y = a + b \cdot X$  in distribution, then under  $Q_2(p) = a + bQ_1(p)$ , and the Q-Q plot should approximate the straight line y = a + bx. Indeed,  $F_1(x) = F_2(a + bx)$  implies  $Q_2(F_1(x)) = a + bx$ , and therefore  $Q_2(p) = a + bQ_1(p)$ .

# 4 Testing normality

The normality hypothesis  $H_0$  states that the population distribution for the sample  $(X_1, \ldots, X_n)$  is normal  $N(\mu, \sigma^2)$  with unspecified parameter values. A Q-Q plot used for testing this hypothesis is called normal probability plot.

If the normal probability plot is close to a straight line y = a + bx, then we accept  $H_0$  and use the point estimates  $\hat{\mu} = a$ ,  $\hat{\sigma} = b$ .

Normal probability plot is the scatter plot for  $(x_k, y_k)$ , where  $x_k = \Phi_{-1}(\frac{k-0.5}{n})$  and  $y_k = X_{(k)}$ .

If normality does not hold, draw a straight line via empirical lower and upper quartiles to detect a light tails profile or heavy tails profile.



For the normal distribution  $\beta_2 = 3$ . Leptokurtic distribution:  $b_2 > 3$  (heavy tails). Platykurtic distribution:  $b_2 < 3$  (light tails).

#### **Example** (male heights)

Summary statistics:  $\bar{X} = 181.46$ ,  $\hat{M} = 180$ ,  $b_1 = 1.05$ ,  $b_2 = 4.31$ . Good to know: the distribution of the heights of adult males is positively skewed, so that  $M < \mu$ , or in other terms,  $P(X < \mu) > 0.50$ .

The gamma distribution  $\operatorname{Gamma}(\alpha, \overline{\lambda})$  is positively skewed  $\beta_1 = \frac{2}{\sqrt{\alpha}}$ , and leptokurtic  $\beta_2 = 3 + \frac{6}{\alpha}$ .

# 5 Measures of location

The central point of a distribution can be defined in terms of various measures of location, for example, as the population mean  $\mu$  or the median M. The population median M is estimated by the sample median.

Sample median:  $\hat{M} = X_{(k)}$ , if n = 2k - 1 and  $\hat{M} = \frac{X_{(k)} + X_{(k+1)}}{2}$ , if n = 2k.

The sample mean  $\bar{X}$  is sensitive to outliers while the sample median  $\hat{M}$  is not,  $\hat{M}$  is a robust estimator.

#### Confidence interval for the median

Consider an IID sample  $(X_1, \ldots, X_n)$  without assuming any parametric model for the unknown population distribution. Let  $Y = \sum_{i=1}^n \mathbb{1}_{\{X_i \leq M\}}$  be the number of observations below the median, then

$$p_k = P(X_{(k)} < M < X_{(n-k+1)}) = P(k \le Y \le n-k)$$

can be computed from the symmetric binomial distribution  $Y \sim Bin(n, 0.5)$ . This yields the following non-parametric formula for an exact confidence interval for the median.

 $(X_{(k)}, X_{(n-k+1)})$  is a  $100 \cdot p_k \%$  CI for the population median M.

**Example**. For n = 25, from the table below we find that  $(X_{(8)}, X_{(18)})$  gives a 95.7% CI for the median.

### Sign test

The sign test is a non-parametric test of  $H_0$ :  $M = M_0$  against the two-sided alternative  $H_1$ :  $M \neq M_0$ . The sign test statistic  $Y_0 = \sum_{i=1}^n \mathbb{1}_{\{X_i \leq M_0\}}$  counts the number of observations below the null hypothesis value. It has a simple null distribution  $Y_0 \stackrel{H_0}{\sim} \operatorname{Bin}(n, 0.5)$ . Connection to the above CI formula: reject  $H_0$  if  $M_0$  falls outside the corresponding confidence interval  $(X_{(k)}, X_{(n-k+1)})$ .

### Trimmed means

A trimmed mean is a robust measure of location computed from a central portion of the data.

 $\alpha$ -trimmed mean  $\bar{X}_{\alpha}$  = sample mean without  $\frac{n\alpha}{2}$  smallest and  $\frac{n\alpha}{2}$  largest observations

### **Example** (male heights)

Ignoring 20% of largest and 20% of smallest observations we compute  $\bar{X}_{0.4}=180.36$ . The trimmed mean is between  $\bar{X} = 181.46$  and  $\hat{M} = 180$ .

When summarizing data compute several measures of location and compare the results.

### Nonparametric bootstrap

Substitute the population distribution by the empirical distribution. Then a bootstrap sample is obtained by resampling with replacement from the original sample  $x_1, \ldots, x_n$ .

Generate many bootstrap samples of size n to approximate the sampling distribution for an estimator like trimmed mean, sample median, or s.

# 6 Measures of dispersion

Sample variance  $s^2$  and sample range  $R = X_{(n)} - X_{(1)}$  are sensitive to outliers. Two robust measures of dispersion:

interquartile range IQR = Q(0.75) - Q(0.25) is the difference between the upper and lower quartiles, MAD = Median of Absolute values of Deviations from the sample median  $|X_i - \hat{M}|, i = 1, ..., n$ .

Three estimates of  $\sigma$  for the normal distribution N( $\mu, \sigma^2$ ) model: s,  $\frac{IQR}{1.35}, \frac{MAD}{0.675}$ 

Under the normality assumption

IQR =  $(\mu + \sigma \Phi_{-1}(0.75)) - (\mu + \sigma \Phi_{-1}(0.25)) = 2\sigma \Phi_{-1}(0.75) = 1.35\sigma$ , because  $\Phi_{-1}(0.75) = 0.675$ . MAD =  $0.675\sigma$ , since P( $|X - \mu| \le 0.675\sigma$ ) =  $(\Phi(0.675) - 0.5) \cdot 2 = 0.5$ .

## Box plot

The box plots are convenient to use for comparing different samples (illustrate using the daily  $SO_2$  concentration data). A box plot is built of the following components

upper dots = {data  $\geq$  UQ + 1.5 IQR} upper whisker end = {max data point  $\leq$  UQ + 1.5 IQR} upper edge of the box = upper quartile (UQ) box center = median lower edge of the box = lower quartile (LQ) lower whisker end = {min data point  $\geq$  LQ - 1.5 IQR} lower dots = {data  $\leq$  LQ - 1.5 IQR}