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Chapter 10. Summarising data

1 Empirical probability distribution

Consider an IID sample (X1, . . . , Xn) from the population distribution F (x) = P(X ≤ x).

Empirical distribution function Fn(x) = 1
n

∑n
i=1 1{Xi≤x}.

For a fixed x, Fn(x) is the sample proportion estimating the population proportion F (x).
Fn(·) is a cumulative distribution function with mean X̄ and variance n−1

n
s2.

If the data describes life lengths, then it is more convenient to use the empirical survival function
Sn(x) = 1 − Fn(x), the proportion of the data greater than x. If the lifelength T has distribution
function F (t) = P(T ≤ t), then its survival function is S(t) = P(T > t) = 1− F (t).

Hazard function h(t) = f(t)
S(t)

, where f(t) = F ′(t) is the probability density function.

The hazard function is the mortality rate at age t:

P (t < T ≤ t+ δ|T ≥ t) =
F (t+ δ)− F (t)

S(t)
∼ δ · h(t), δ → 0.

The hazard function can be viewed as the negative of the slope of the log survival function:

h(t) = − d

dt
logS(t) = − d

dt
log(1− F (t)).

Example (Guinea pigs)
Guinea pigs were infected with tubercle bacillus, then divided in 5 treatment groups and one control
group. The survival times were recorded. The data is illustrated by two graphs: one for the survival
functions and the other for the log-survival functions.

A constant hazard rate h(t) = λ corresponds to the exponential distribution Exp(λ).

2 Density estimation

A histogram displays the observed counts Oj =
∑n

i=1 1{Xi∈cellj} over the adjacent cells of width h. The
choice of a balanced width h is important: smaller h give ragged profiles, larger h give obscured profiles.

Put fh(x) = 1
nh
Oj for x belonging to the cell j, and notice that

∫
fh(x)dx = 1

nh

∑
j Oj = 1.

The scaled histogram given by the graph of fh(x) is a density estimate.

Kernel density estimate with bandwidth h produces a smooth curve

fh(x) = 1
nh

∑
φ(x−Xi

h
), where φ(x) = 1√

2π
e−x

2/2.
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Example (male heights)
Let = column of 24 male heights. For a given bandwidth h, the following matlab code produces a plot
for a kernel density estimate

x=160:0.1:210; L=length(x);
f=normpdf((ones(24,1)*x - hm*ones(1,L))/h);
fh=sum(f)/(24*h); plot(x,fh)

The stem-and-leaf plot for the 24 male heights indicates the distribution shape plus gives the full
numerical information:

17:056678899
18:0000112346
19:229

3 Q-Q plots

The inverse of the cumulative distribution function F is called the quantile function Q = F−1. The
quantile function Φ−1 for the standard normal distribution Φ is called the profit function (from
PROBability unIT).

For a given distribution F and 0 ≤ p ≤ 1, the p-quantile is Q(p).

Special quantiles:
median M = Q(0.5), lower quartile Q(0.25), upper quartile Q(0.75).

Quantile xp cuts off proportion p of smallest values of a random variable X with P(X ≤ x) = F (x):
P(X ≤ xp) = F (xp) = F (Q(p)) = p.

The ordered sample values X(1) ≤ X(2) ≤ . . . ≤ X(n) are the jump points for the empirical distribution
function. Since

Fn(X(k)) = k
n

and Fn(X(k) − ε) = k−1
n

, X(k) is called the empirical (k−0.5
n

)-quantile.

Suppose we have two independent samples (X1, . . . , Xn) and (Y1, . . . , Yn) with population distribution
functions F1 and F2. A relevant null hypothesis H0: F1 ≡ F2 is equivalent to H0: Q1 ≡ Q2.
It can be tested graphically using a Q-Q plot.

The Q-Q plot is a scatter plot of n dots with coordinates (X(k), Y(k)).

We accept the H0 of equal distributions if the scatter plot is close to the bisector, that is when we
have almost equal quantiles.

More generally, if P(X ≤ x) = P(Y ≤ a + bx), in other words, Y = a + b · X in distribution, then
under Q2(p) = a+ bQ1(p), and the Q-Q plot should approximate the straight line y = a+ bx. Indeed,

F1(x) = F2(a+ bx) implies Q2(F1(x)) = a+ bx, and therefore Q2(p) = a+ bQ1(p).

4 Testing normality

The normality hypothesis H0 states that the population distribution for the sample (X1, . . . , Xn) is
normal N(µ, σ2) with unspecified parameter values. A Q-Q plot used for testing this hypothesis is
called normal probability plot.
If the normal probability plot is close to a straight line y = a + bx, then we accept H0 and use the
point estimates µ̂ = a, σ̂ = b.
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Normal probability plot is the scatter plot for (xk, yk), where xk = Φ−1(
k−0.5
n

) and yk = X(k).

If normality does not hold, draw a straight line via empirical lower and upper quartiles to detect a
light tails profile or heavy tails profile.

Coefficient of skewness: β1 = E(X−µ)3
σ3 , sample skewness: b1 = 1

s3n

∑
(Xi − X̄)3

Kurtosis β2 = E(X−µ)4
σ4 , sample kurtosis: b2 = 1

s4n

∑
(Xi − X̄)4

For the normal distribution β2 = 3. Leptokurtic distribution: b2 > 3 (heavy tails). Platykurtic
distribution: b2 < 3 (light tails).

Example (male heights)
Summary statistics: X̄ = 181.46, M̂ = 180, b1 = 1.05, b2 = 4.31. Good to know: the distribution of
the heights of adult males is positively skewed, so that M < µ, or in other terms, P(X < µ) > 0.50.

The gamma distribution Gamma(α, λ) is positively skewed β1 = 2√
α

, and leptokurtic β2 = 3 + 6
α

.

5 Measures of location

The central point of a distribution can be defined in terms of various measures of location, for example,
as the population mean µ or the median M . The population median M is estimated by the sample
median.

Sample median: M̂ = X(k), if n = 2k − 1 and M̂ =
X(k)+X(k+1)

2
, if n = 2k.

The sample mean X̄ is sensitive to outliers while the sample median M̂ is not, M̂ is a robust estimator.

Confidence interval for the median
Consider an IID sample (X1, . . . , Xn) without assuming any parametric model for the unknown pop-
ulation distribution. Let Y =

∑n
i=1 1{Xi≤M} be the number of observations below the median, then

pk = P(X(k) < M < X(n−k+1)) = P(k ≤ Y ≤ n− k)

can be computed from the symmetric binomial distribution Y ∼ Bin(n, 0.5).
This yields the following non-parametric formula for an exact confidence interval for the median.

(X(k), X(n−k+1)) is a 100 · pk% CI for the population median M .

Example. For n = 25, from the table below we find that (X(8), X(18)) gives a 95.7% CI for the median.

k 6 7 8 9 10 11 12
pk 99.6 98.6 95.7 89.2 77.0 57.6 31.0
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Sign test
The sign test is a non-parametric test of H0: M = M0 against the two-sided alternative H1: M 6= M0.
The sign test statistic Y0 =

∑n
i=1 1{Xi≤M0} counts the number of observations below the null

hypothesis value. It has a simple null distribution Y0
H0∼ Bin(n, 0.5). Connection to the above CI

formula: reject H0 if M0 falls outside the corresponding confidence interval (X(k), X(n−k+1)).

Trimmed means
A trimmed mean is a robust measure of location computed from a central portion of the data.

α-trimmed mean X̄α = sample mean without nα
2

smallest and nα
2

largest observations

Example (male heights)
Ignoring 20% of largest and 20% of smallest observations we compute X̄0.4=180.36. The trimmed
mean is between X̄ = 181.46 and M̂ = 180.

When summarizing data compute several measures of location and compare the results.

Nonparametric bootstrap
Substitute the population distribution by the empirical distribution. Then a bootstrap sample is
obtained by resampling with replacement from the original sample x1, . . . , xn.
Generate many bootstrap samples of size n to approximate the sampling distribution for an estimator
like trimmed mean, sample median, or s.

6 Measures of dispersion

Sample variance s2 and sample range R = X(n) −X(1) are sensitive to outliers. Two robust measures
of dispersion:

interquartile range IQR =Q(0.75)−Q(0.25) is the difference between the upper and lower quartiles,
MAD = Median of Absolute values of Deviations from the sample median |Xi− M̂ |, i = 1, . . . , n.

Three estimates of σ for the normal distribution N(µ, σ2) model: s, IQR
1.35

, MAD
0.675

Under the normality assumption
IQR = (µ+ σΦ−1(0.75))− (µ+ σΦ−1(0.25)) = 2σΦ−1(0.75) = 1.35σ, because Φ−1(0.75) = 0.675.
MAD = 0.675σ, since P(|X − µ| ≤ 0.675σ) = (Φ(0.675)− 0.5) · 2 = 0.5.

Box plot
The box plots are convenient to use for comparing different samples (illustrate using the daily SO2

concentration data). A box plot is built of the following components

upper dots = {data ≥ UQ + 1.5 IQR}
upper whisker end = {max data point ≤ UQ + 1.5 IQR}
upper edge of the box = upper quartile (UQ)
box center = median
lower edge of the box = lower quartile (LQ)
lower whisker end = {min data point ≥ LQ – 1.5 IQR}
lower dots = {data ≤ LQ – 1.5 IQR}
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