Serik Sagitov, Chalmers and GU, January 27, 2016

Chapter 10. Summarising data

1 Empirical probability distribution

Consider an IID sample $\left(X_{1}, \ldots, X_{n}\right)$ from the population distribution $F(x)=\mathrm{P}(X \leq x)$.

$$
\text { Empirical distribution function } F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i} \leq x\right\}} .
$$

For a fixed $x, F_{n}(x)$ is the sample proportion estimating the population proportion $F(x)$. $F_{n}(\cdot)$ is a cumulative distribution function with mean \bar{X} and variance $\frac{n-1}{n} s^{2}$.

If the data describes life lengths, then it is more convenient to use the empirical survival function $S_{n}(x)=1-F_{n}(x)$, the proportion of the data greater than x. If the lifelength T has distribution function $F(t)=\mathrm{P}(T \leq t)$, then its survival function is $S(t)=\mathrm{P}(T>t)=1-F(t)$.

Hazard function $h(t)=\frac{f(t)}{S(t)}$, where $f(t)=F^{\prime}(t)$ is the probability density function.
The hazard function is the mortality rate at age t :

$$
P(t<T \leq t+\delta \mid T \geq t)=\frac{F(t+\delta)-F(t)}{S(t)} \sim \delta \cdot h(t), \quad \delta \rightarrow 0
$$

The hazard function can be viewed as the negative of the slope of the log survival function:

$$
h(t)=-\frac{d}{d t} \log S(t)=-\frac{d}{d t} \log (1-F(t))
$$

Example (Guinea pigs)
Guinea pigs were infected with tubercle bacillus, then divided in 5 treatment groups and one control group. The survival times were recorded. The data is illustrated by two graphs: one for the survival functions and the other for the log-survival functions.

A constant hazard rate $h(t)=\lambda$ corresponds to the exponential distribution $\operatorname{Exp}(\lambda)$.

2 Density estimation

A histogram displays the observed counts $O_{j}=\sum_{i=1}^{n} 1_{\left\{X_{i} \in \text { cell }_{j}\right\}}$ over the adjacent cells of width h. The choice of a balanced width h is important: smaller h give ragged profiles, larger h give obscured profiles.

Put $f_{h}(x)=\frac{1}{n h} O_{j}$ for x belonging to the cell j, and notice that $\int f_{h}(x) d x=\frac{1}{n h} \sum_{j} O_{j}=1$. The scaled histogram given by the graph of $f_{h}(x)$ is a density estimate.

Kernel density estimate with bandwidth h produces a smooth curve

$$
f_{h}(x)=\frac{1}{n h} \sum \phi\left(\frac{x-X_{i}}{h}\right), \text { where } \phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Example (male heights)
Let $=$ column of 24 male heights. For a given bandwidth h, the following matlab code produces a plot for a kernel density estimate

$$
\begin{aligned}
& \mathrm{x}=160: 0.1: 210 ; \mathrm{L}=\operatorname{length}(\mathrm{x}) ; \\
& \mathrm{f}=\operatorname{normpdf}\left(\left(\text { ones }(24,1)^{*} \mathrm{x}-\mathrm{hm}^{*} \operatorname{ones}(1, \mathrm{~L})\right) / \mathrm{h}\right) ; \\
& \mathrm{fh}=\operatorname{sum}(\mathrm{f}) /\left(24^{*}\right) ; \operatorname{plot}(\mathrm{x}, \mathrm{fh})
\end{aligned}
$$

The stem-and-leaf plot for the 24 male heights indicates the distribution shape plus gives the full numerical information:

17:056678899
18:0000112346
19:229

3 Q-Q plots

The inverse of the cumulative distribution function F is called the quantile function $Q=F_{-1}$. The quantile function Φ_{-1} for the standard normal distribution Φ is called the profit function (from PROBability unIT).

$$
\text { For a given distribution } F \text { and } 0 \leq p \leq 1 \text {, the } p \text {-quantile is } Q(p) \text {. }
$$

Special quantiles:
median $M=Q(0.5)$, lower quartile $Q(0.25)$, upper quartile $Q(0.75)$.
Quantile x_{p} cuts off proportion p of smallest values of a random variable X with $\mathrm{P}(X \leq x)=F(x)$:

$$
\mathrm{P}\left(X \leq x_{p}\right)=F\left(x_{p}\right)=F(Q(p))=p .
$$

The ordered sample values $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ are the jump points for the empirical distribution function. Since
$F_{n}\left(X_{(k)}\right)=\frac{k}{n}$ and $F_{n}\left(X_{(k)}-\epsilon\right)=\frac{k-1}{n}, \quad X_{(k)}$ is called the empirical $\left(\frac{k-0.5}{n}\right)$-quantile.
Suppose we have two independent samples $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(Y_{1}, \ldots, Y_{n}\right)$ with population distribution functions F_{1} and F_{2}. A relevant null hypothesis $H_{0}: F_{1} \equiv F_{2}$ is equivalent to $H_{0}: Q_{1} \equiv Q_{2}$.
It can be tested graphically using a Q-Q plot.
The Q-Q plot is a scatter plot of n dots with coordinates $\left(X_{(k)}, Y_{(k)}\right)$.
We accept the H_{0} of equal distributions if the scatter plot is close to the bisector, that is when we have almost equal quantiles.

More generally, if $\mathrm{P}(X \leq x)=\mathrm{P}(Y \leq a+b x)$, in other words, $Y=a+b \cdot X$ in distribution, then under $Q_{2}(p)=a+b Q_{1}(p)$, and the Q-Q plot should approximate the straight line $y=a+b x$. Indeed, $F_{1}(x)=F_{2}(a+b x)$ implies $Q_{2}\left(F_{1}(x)\right)=a+b x$, and therefore $Q_{2}(p)=a+b Q_{1}(p)$.

4 Testing normality

The normality hypothesis H_{0} states that the population distribution for the sample (X_{1}, \ldots, X_{n}) is normal $\mathrm{N}\left(\mu, \sigma^{2}\right)$ with unspecified parameter values. A Q-Q plot used for testing this hypothesis is called normal probability plot.
If the normal probability plot is close to a straight line $y=a+b x$, then we accept H_{0} and use the point estimates $\hat{\mu}=a, \hat{\sigma}=b$.

Normal probability plot is the scatter plot for $\left(x_{k}, y_{k}\right)$, where $x_{k}=\Phi_{-1}\left(\frac{k-0.5}{n}\right)$ and $y_{k}=X_{(k)}$.
If normality does not hold, draw a straight line via empirical lower and upper quartiles to detect a light tails profile or heavy tails profile.

$$
\begin{aligned}
& \text { Coefficient of skewness: } \beta_{1}=\frac{E(X-\mu)^{3}}{\sigma^{3}} \text {, sample skewness: } b_{1}=\frac{1}{s^{3} n} \sum\left(X_{i}-\bar{X}\right)^{3} \\
& \text { Kurtosis } \beta_{2}=\frac{E(X-\mu)^{4}}{\sigma^{4}} \text {, sample kurtosis: } b_{2}=\frac{1}{s^{4} n} \sum\left(X_{i}-\bar{X}\right)^{4}
\end{aligned}
$$

For the normal distribution $\beta_{2}=3$. Leptokurtic distribution: $b_{2}>3$ (heavy tails). Platykurtic distribution: $b_{2}<3$ (light tails).

Example (male heights)
Summary statistics: $\bar{X}=181.46, \hat{M}=180, b_{1}=1.05, b_{2}=4.31$. Good to know: the distribution of the heights of adult males is positively skewed, so that $M<\mu$, or in other terms, $\mathrm{P}(X<\mu)>0.50$.

The gamma distribution $\operatorname{Gamma}(\alpha, \lambda)$ is positively skewed $\beta_{1}=\frac{2}{\sqrt{\alpha}}$, and leptokurtic $\beta_{2}=3+\frac{6}{\alpha}$.

5 Measures of location

The central point of a distribution can be defined in terms of various measures of location, for example, as the population mean μ or the median M. The population median M is estimated by the sample median.

$$
\text { Sample median: } \hat{M}=X_{(k)} \text {, if } n=2 k-1 \text { and } \hat{M}=\frac{X_{(k)}+X_{(k+1)}}{2} \text {, if } n=2 k \text {. }
$$

The sample mean \bar{X} is sensitive to outliers while the sample median \hat{M} is not, \hat{M} is a robust estimator.
Confidence interval for the median
Consider an IID sample (X_{1}, \ldots, X_{n}) without assuming any parametric model for the unknown population distribution. Let $Y=\sum_{i=1}^{n} 1_{\left\{X_{i} \leq M\right\}}$ be the number of observations below the median, then

$$
p_{k}=\mathrm{P}\left(X_{(k)}<M<X_{(n-k+1)}\right)=\mathrm{P}(k \leq Y \leq n-k)
$$

can be computed from the symmetric binomial distribution $Y \sim \operatorname{Bin}(n, 0.5)$.
This yields the following non-parametric formula for an exact confidence interval for the median.

$$
\left(X_{(k)}, X_{(n-k+1)}\right) \text { is a } 100 \cdot p_{k} \% \text { CI for the population median } M .
$$

Example. For $n=25$, from the table below we find that $\left(X_{(8)}, X_{(18)}\right)$ gives a 95.7% CI for the median.

k	6	7	8	9	10	11	12
p_{k}	99.6	98.6	95.7	89.2	77.0	57.6	31.0

Sign test

The sign test is a non-parametric test of $H_{0}: M=M_{0}$ against the two-sided alternative $H_{1}: M \neq M_{0}$. The sign test statistic $Y_{0}=\sum_{i=1}^{n} 1_{\left\{X_{i} \leq M_{0}\right\}}$ counts the number of observations below the null hypothesis value. It has a simple null distribution $Y_{0} \stackrel{H_{0}}{\sim} \operatorname{Bin}(n, 0.5)$. Connection to the above CI formula: reject H_{0} if M_{0} falls outside the corresponding confidence interval ($\left.X_{(k)}, X_{(n-k+1)}\right)$.

Trimmed means

A trimmed mean is a robust measure of location computed from a central portion of the data.

$$
\alpha \text {-trimmed mean } \bar{X}_{\alpha}=\text { sample mean without } \frac{n \alpha}{2} \text { smallest and } \frac{n \alpha}{2} \text { largest observations }
$$

Example (male heights)
Ignoring 20% of largest and 20% of smallest observations we compute $\bar{X}_{0.4}=180.36$. The trimmed mean is between $\bar{X}=181.46$ and $\hat{M}=180$.

When summarizing data compute several measures of location and compare the results.

Nonparametric bootstrap

Substitute the population distribution by the empirical distribution. Then a bootstrap sample is obtained by resampling with replacement from the original sample x_{1}, \ldots, x_{n}.
Generate many bootstrap samples of size n to approximate the sampling distribution for an estimator like trimmed mean, sample median, or s.

6 Measures of dispersion

Sample variance s^{2} and sample range $R=X_{(n)}-X_{(1)}$ are sensitive to outliers. Two robust measures of dispersion:
interquartile range $\mathrm{IQR}=Q(0.75)-Q(0.25)$ is the difference between the upper and lower quartiles, $\mathrm{MAD}=$ Median of Absolute values of Deviations from the sample median $\left|X_{i}-\hat{M}\right|, i=1, \ldots, n$.

$$
\text { Three estimates of } \sigma \text { for the normal distribution } \mathrm{N}\left(\mu, \sigma^{2}\right) \text { model: } s, \frac{\mathrm{IQR}}{1.35}, \frac{\mathrm{MAD}}{0.675}
$$

Under the normality assumption
$\mathrm{IQR}=\left(\mu+\sigma \Phi_{-1}(0.75)\right)-\left(\mu+\sigma \Phi_{-1}(0.25)\right)=2 \sigma \Phi_{-1}(0.75)=1.35 \sigma$, because $\Phi_{-1}(0.75)=0.675$.
MAD $=0.675 \sigma$, since $\mathrm{P}(|X-\mu| \leq 0.675 \sigma)=(\Phi(0.675)-0.5) \cdot 2=0.5$.

Box plot

The box plots are convenient to use for comparing different samples (illustrate using the daily SO_{2} concentration data). A box plot is built of the following components
upper dots $=\{$ data $\geq \mathrm{UQ}+$ 1.5 IQR $\}$
upper whisker end $=\{\max$ data point $\leq \mathrm{UQ}+1.5 \mathrm{IQR}\}$
upper edge of the box $=$ upper quartile (UQ)
box center $=$ median
lower edge of the box $=$ lower quartile (LQ)
lower whisker end $=\{$ min data point $\geq \mathrm{LQ}-1.5 \mathrm{IQR}\}$
lower dots $=\{$ data $\leq \mathrm{LQ}-1.5 \mathrm{IQR}\}$

