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Chapter 11. Comparing two samples

Suppose we wish to compare two population distributions with means and standard deviations (µ1, σ1)
and (µ2, σ2). Given two IID samples (X1, . . . , Xn) and (Y1, . . . , Ym) from these two populations, we
can compute two sample means and their standard errors

E X̄ = µ1, Var X̄ =
σ2

1

n
, sX̄ = s1√

n
, s2

1 = 1
n−1

∑n
i=1(Xi − X̄)2,

E Ȳ = µ2, Var Ȳ =
σ2

2

m
, sȲ = s2√

m
, s2

2 = 1
m−1

∑m
i=1(Yi − Ȳ )2.

The difference (X̄ − Ȳ ) is an unbiased estimate of (µ1 − µ2). We are interested in
finding the standard error of X̄ − Ȳ and an interval estimate for (µ1 − µ2),
as well as testing the null hypothesis of equality H0: µ1 = µ2.

Two main settings: independent samples and paired samples.

1 Two independent samples

If (X1, . . . , Xn) is independent from (Y1, . . . , Ym), then Var(X̄ − Ȳ ) =
σ2

1

n
+

σ2
2

m
.

Therefore, s2
X̄−Ȳ = s2

X̄
+ s2

Ȳ
=

s21
n

+
s22
m

gives an unbiased estimate of Var(X̄ − Ȳ ).

Large sample test for the difference
If n and m are large, we can use a normal approximation X̄− Ȳ a∼ N(µ1−µ2, s

2
X̄

+s2
Ȳ

). The hypothesis

H0: µ1 = µ2 is tested using the test statistic T = X̄−Ȳ√
s2
X̄

+s2
Ȳ

.

Approximate CI for (µ1 − µ2) is given by X̄ − Ȳ ± zα/2 ·
√
s2
X̄

+ s2
Ȳ

.

For the binomial model X ∼ Bin(n, p1), Y ∼ Bin(m, p2), the sample proportions p̂1 = X
n
, p̂2 = Y

m
have

standard errors s2
p̂1

= p̂1q̂1
n−1

, s2
p̂2

= p̂2q̂2
m−1

, then a 95 % CI for (p1−p2) is given by p̂1−p̂2±1.96
√

p̂1q̂1
n−1

+ p̂2q̂2
m−1

.

Example (swedish polls)
Consider two consecutive poll results p̂1 and p̂2 with n ≈ m ≈ 5000 interviews. A change in support
to Social Democrats at p̂1 ≈ 0.4 is significant if

|p̂1 − p̂2| > 1.96 ·
√

2 · 0.4 · 0.6
5000

≈ 1.9%.

This should be compared with the one-sample hypothesis testing H0 : p = 0.4 vs H0 : p 6= 0.4. The

approximate 95% CI for p is p̂± 1.96 ·
√

p̂q̂
n−1

and if p̂ ≈ 0.4, then the difference is significant if

|p̂− p0| > 1.96 ·
√

0.4 · 0.6
5000

≈ 1.3%.
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Two-sample t-test
The key assumption of the two-sample t-test:

two normal population distributions X ∼ N(µ1, σ
2), Y ∼ N(µ2, σ

2) have equal variances.
Given σ2

1 = σ2
2 = σ2, the pooled sample variance

s2
p =

∑n
i=1(Xi − X̄)2 +

∑m
i=1(Yi − Ȳ )2

n+m− 2
=

n− 1

n+m− 2
· s2

1 +
m− 1

n+m− 2
· s2

2

is an unbiased estimate of the variance with E(s2
p) = σ2.

In view of Var(X̄ − Ȳ ) = σ2 · n+m
nm

, we arrive at an alternative unbiased estimate s2
X̄−Ȳ = s2

p · n+m
nm

for

the variance Var(X̄ − Ȳ ) of the sampling distribution.

Exact distribution (X̄−Ȳ )−(µ1−µ2)
sp

·
√

nm
n+m
∼ tn+m−2

Exact CI for (µ1 − µ2) is given by X̄ − Ȳ ± tn+m−2(α
2
) · sp ·

√
n+m
nm

.

Two sample t-test, equal population variances

For H0: µ1 = µ2, the null distribution of T = X̄−Ȳ
sp
·
√

nm
n+m

is T ∼ tn+m−2.

Welch’s t-test. If variances are not assumed to be equal so that X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2), then

the t-test can be modified using the fact that (X̄−Ȳ )−(µ1−µ2)√
s2
X̄

+s2
Ȳ

has an approximate tdf-distribution with

df =
(s2
X̄

+ s2
Ȳ

)2

s4
X̄
/(n− 1) + s4

Ȳ
/(m− 1)

Example (iron retention)
Percentage of Fe2+ and Fe3+ retained by mice data at concentration 1.2 millimolar.

Fe2+: n = 18, X̄ = 9.63, s1 = 6.69, sX̄ = 1.58
Fe3+: m = 18, Ȳ = 8.20, s2 = 5.45, sȲ = 1.28

Boxplots and normal probability plots show that the population distributions are not normal.
We test H0: µ1 = µ2 the large sample test. Using the observed value Tobs = X̄−Ȳ√

s2
X̄

+s2
Ȳ

= 0.7, the

approximate two-sided P−value = 0.48.
After the log transformation the data look more like normally distributed, as seen from the boxplots
and normal probability plots. For the transformed data, we have

n = 18, X̄ ′ = 2.09, s′1 = 0.659, sX̄′ = 0.155,
m = 18, Ȳ ′ = 1.90, s′2 = 0.574, sȲ ′ = 0.135.

Two sample t-test for the transformed data
equal variances: T = 0.917, df = 34, P = 0.3656,
unequal variances: T = 0.917, df = 33, P = 0.3658.

Wilcoxon rank sum test
Assume general nonparametric population distributions F1 and F2, and consider H0: F1 = F2 against
H1: F1 6= F2. The rank sum test procedure:

- pool the samples and replace the data values by their ranks 1, 2, . . . , n+m,
- compute test statistics R1 = sum of the ranks of X observations, and R2 = sum of Y ranks,
- use the null distribution table for R1 and R2, which depend only on sample sizes n and m.
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Example (in class experiment)
Height distributions for females F1, and males F2. For n = m = 3, compute R1 and one-sided P -value.

For n ≥ 10, m ≥ 10 apply the normal approximation for the null distributions of R1 and R2.

R1 +R2 =
(
n+m+1

2

)
, E(R1) = n(n+m+1)

2
, E(R2) = m(n+m+1)

2
, Var(R1) = Var(R2) = mn(n+m+1)

12
.

2 Paired samples

Examples of paired observations:
different drugs for two patients matched by age, sex,
a fruit weighed before and after shipment,
two types of tires tested on the same car.

A paired sample is a vector of IID pairs (X1, Y1), . . . , (Xn, Yn). This should be treated a one-
dimensional IID sample (D1, . . . , Dn) of the sample differences Di = Xi − Yi. Again, estimate the
population difference µ1 − µ2 using the sample mean D̄ = X̄ − Ȳ .
Correlation coefficient ρ = Cov(X,Y )

σ1σ2
is a unit-free measure of dependence.

We have ρ = 0 for independent pairs. Smaller standard error if ρ > 0:

Var(X̄ − Ȳ ) = Var(X̄) + Var(Ȳ )− 2σX̄σȲ ρ < Var(X̄) + Var(Ȳ )

Example (platelet aggregation)
Paired measurements of n = 11 individuals before smoking, Yi, and after smoking, Xi. Using the data
we estimate correlation as ρ ≈ 0.90.

Yi Xi Di Signed rank
25 27 2 +2
25 29 4 +3.5
27 37 10 +6
44 56 12 +7
30 46 16 +10
67 82 15 +8.5
53 57 4 +3.5
53 80 27 +11
52 61 9 +5
60 59 –1 –1
28 43 15 +8.5

Assuming D ∼ N(µ, σ2) apply the one-sample t-test to H0: µ1 = µ2 against H1: µ1 6= µ2.
Observed test statistic D̄

sD̄
= 10.27

2.40
= 4.28. Two-sided P-value = 2*(1 – tcdf(4.28,10)) = 0.0016.

Sign test
No assumption except IID sampling. Non-parametric test of H0: MD = 0 against H1: MD 6= 0.
Test statistics: either Y+ =

∑
1{Di>0} or Y− =

∑
1{Di<0}. Both have null distribution Bin(n, 0.5).

Ties Di = 0: discard the tied observations and reduce n or dissolve the ties by randomisation.
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Example (platelet aggregation)
Observed test statistic Y− = 1. A two-sided P-value = 2[(0.5)11 + 11(0.5)11] = 0.012.

Wilcoxon signed rank test
Non-parametric test of H0: distribution of D is symmetric about MD = 0. Test statistics:

either W+ =
∑

rank(|Di|) · I(Di > 0) or W− =
∑

rank(|Di|) · I(Di < 0).

Assuming no ties we get W+ +W− = n(n+1)
2

. The null distributions of W+ and W− are the same and
tabulated for smaller values of n. For n ≥ 20, use the normal approximation of the null distribution
with µW = n(n+1)

4
and σ2

W = n(n+1)(2n+1)
24

.

The signed rank test uses more data information than the sign test
but requires symmetric distribution of differences.

Example (platelet aggregation)
Observed value of the test statistic W− = 1. It gives a two-sided P-value = 0.002 (check symmetry).

3 Influence of external factors

Double-blind, randomised controlled experiments are used to balance out such external factors as
placebo effect, time factor, background variables like temperature, location factor.

Example (portocaval shunt)
Portocaval shunt is an operation used to lower blood pressure in the liver. People believed in its high
efficiency until the controlled experiments were performed.

Enthusiasm level Marked Moderate None
No controls 24 7 1
Nonrandomized controls 10 3 2
Randomized controls 0 1 3

Example (platelet aggregation)
Further parts of the experimental design: control group 1 smoked lettuce cigarettes, control group 2
“smoked” unlit cigarettes.

Simpson’s paradox
Hospital A has higher overall death rate than hospital B. However, if we split the data in two parts,
patients in good (+) and bad (−) conditions, for both parts A performs better.

Hospital: A B A+ B+ A– B–
Died 63 16 6 8 57 8
Survived 2037 784 594 592 1443 192
Total 2100 800 600 600 1500 200
Death Rate .030 .020 .010 .013 .038 .040

Here, the external factor, patient condition, is an example of a confounding factor:

Hospital performance ← Patient condition → Death rate

4


