Chapter 13. The analysis of categorical data

Categorical data appear in the form of a contingency table containing the sample counts for various combinations of categories. Here the statistical models are based on the multinomial distribution.

Joint probabilities $\pi_{i j}=\mathrm{P}(A=i, B=j), \quad$ marginal probabilities $\pi_{i} .=\mathrm{P}(A=i), \pi_{\cdot j}=\mathrm{P}(B=j)$, conditional probabilities $\pi_{i \mid j}=\mathrm{P}(A=i \mid B=j)=\frac{\pi_{i j}}{\pi_{\cdot j}}$.

	B_{1}	$\mathrm{~B}_{2}$	\ldots	$\mathrm{~B}_{J}$	Total
A_{1}	π_{11}	π_{12}	\ldots	$\pi_{1 J}$	$\pi_{1 .}$
A_{2}	π_{21}	π_{22}	\ldots	$\pi_{2 J}$	$\pi_{2 .}$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
A_{I}	$\pi_{I 1}$	$\pi_{I 2}$	\ldots	$\pi_{I J}$	$\pi_{I .}$
Total	$\pi_{\cdot 1}$	$\pi_{\cdot 2}$	\ldots	$\pi_{\cdot J}$	1

	B_{1}	$\mathrm{~B}_{2}$	\ldots	$\mathrm{~B}_{J}$
$\mathrm{~A}_{1}$	$\pi_{1 \mid 1}$	$\pi_{1 \mid 2}$	\ldots	$\pi_{1 \mid J}$
$\mathrm{~A}_{2}$	$\pi_{2 \mid 1}$	$\pi_{2 \mid 2}$	\ldots	$\pi_{2 \mid J}$
\ldots	\ldots	\ldots	\ldots	\ldots
$\mathrm{~A}_{I}$	$\pi_{I \mid 1}$	$\pi_{I \mid 2}$	\ldots	$\pi_{I \mid J}$
Total	1	1	\ldots	1

The left table corresponds to a single population distribution for a cross-classification $A \times B$. The null hypothesis of independence states no relationship between the two factors A and B
$H_{0}: \pi_{i j}=\pi_{i} \cdot \pi_{\cdot j}$ for all pairs (i, j) is a nested model with $I-1+J-1$ degrees of freedom.
The right table describes J population distributions for a common classification A. The null hypothesis of homogeneity states the equality of J population distributions
$H_{0}: \pi_{i \mid j}=\pi_{i}$ for all pairs (i, j) is a nested model with $I-1$ degrees of freedom.
The hypothesis of homogeneity is equivalent to the hypothesis of independence.

1 Fisher's exact test

Consider two populations distinguishing between two categories. Then the null hypothesis of homogeneity has the form $H_{0}: \pi_{1 \mid 1}=\pi_{1 \mid 2}$. Data is given by two independent samples summarised as a 2×2 table of sample counts

	Population 1	Population 2	Total
Category 1	n_{11}	n_{12}	$n_{1 .}$
Category 2	n_{21}	n_{22}	$n_{2 .}$
Sample sizes	$n_{\cdot 1}$	$n_{.2}$	$n .$.

Use $K=n_{11}$ as a test statistic. Conditionally on n_{1}. the exact null distribution of the test statistic is hypergeometric $K \sim \operatorname{Hg}(N, n, p)$ with parameters $N=n_{. .}, n=n_{.1}, N p=n_{1}, N q=n_{2}$.

$$
\mathrm{P}(K=k)=\frac{\binom{N p}{k}\binom{N q}{n-k}}{\binom{N}{n}}, \quad \max (0, n-N q) \leq k \leq \min (n, N p) .
$$

Example (gender bias)
Data: 48 copies of the same file with 24 files labeled as "male" and the other 24 labeled as "female". Two possible outcomes: promote or hold file.

	Male	Female	Total
Promote	$n_{11}=21$	$n_{12}=14$	$n_{1 .}=35$
Hold file	$n_{21}=3$	$n_{22}=10$	$n_{2 .}=13$
Total	$n_{.1}=24$	$n_{.2}=24$	$n_{. .}=48$

We wish to test $H_{0}: \pi_{1 \mid 1}=\pi_{1 \mid 2}$, no gender bias, against $H_{1}: \pi_{1 \mid 1}>\pi_{1 \mid 2}$, males are favoured.
Fisher's test would reject H_{0} in favour of the one-sided alternative H_{1} for large values of $K=n_{11}$ having the null distribution

$$
\mathrm{P}(K=k)=\frac{\binom{35}{k}\binom{13}{24}}{\binom{84}{24}}=\frac{\binom{35}{35-k}\binom{13}{k-11}}{\binom{48}{24}}, \quad 11 \leq k \leq 24 .
$$

This is a symmetric distribution with $\mathrm{P}(K \leq 14)=\mathrm{P}(K \geq 21)=0.025$ so that a one-sided $P=0.025$, and a two-sided $P=0.05$.

2 Chi-square test of homogeneity

J independent samples taken from J distributions. The table of $I J$ observed counts:

	Pop. 1	Pop. 2	\ldots	Pop. J	Total
Category 1	n_{11}	n_{12}	\ldots	$n_{1 J}$	$n_{1 .}$
Category 2	n_{21}	n_{22}	\ldots	$n_{2 J}$	$n_{2 .}$
\ldots	\ldots.	\ldots	\ldots	\ldots	\ldots.
Category I	$n_{I 1}$	$n_{I 2}$	\ldots	$n_{I J}$	$n_{I .}$
Sample sizes	$n_{\cdot 1}$	$n_{.2}$	\ldots	$n_{\text {.J }}$	$n .$.

Multinomial distributions $\left(n_{1 j}, \ldots, n_{I j}\right) \sim \operatorname{Mn}\left(n_{. j} ; \pi_{1 \mid j}, \ldots, \pi_{I \mid j}\right), j=1, \ldots, J$.
Under the hypothesis of homogeneity $H_{0}: \pi_{i \mid j}=\pi_{i}$, the maximum likelihood estimates of π_{i} are the pooled sample proportion $\hat{\pi}_{i}=n_{i .} . / n_{. .}, i=1, \ldots, I$. Usinf these estimates we compute the expected cell counts $\hat{E}_{i j}=n_{\cdot j} \cdot \hat{\pi}_{i}=n_{i \cdot} \cdot n_{\cdot j} / n_{\text {.. }}$ and the chi-square test statistic becomes

$$
X^{2}=\sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(n_{i j}-n_{i} \cdot n_{\cdot j} / n . .\right)^{2}}{n_{i \cdot} \cdot n_{\cdot j} / n \cdot .}
$$

Reject H_{0} for large values of X^{2} using the approximate null distribution $X^{2} \stackrel{a}{\sim} \chi_{\mathrm{df}}^{2}$ with

$$
\mathrm{df}=J(I-1)-(I-1)=(I-1)(J-1) .
$$

Example (small cars and personality)
Attitude toward small cars for different personality types. The table of observed (expected) counts:

	Cautious	Middle-of-the-road	Explorer	Total
Favourable	$79(61.6)$	$58(62.2)$	$49(62.2)$	186
Neutral	$10(8.9)$	$8(9.0)$	$9(9.0)$	27
Unfavourable	$10(28.5)$	$34(28.8)$	$42(28.8)$	86
Total	99	100	100	299

The chi-square test statistic is $X^{2}=27.24$, and $\mathrm{df}=(3-1) \cdot(3-1)=4$. After comparing X^{2} with $\chi_{4,0.005}^{2}=14.86$, we reject the hypothesis of homogeneity at 0.5% significance level. Persons who saw themselves as cautious conservatives are more likely to express a favourable opinion of small cars.

3 Chi-square test of independence

Data: a single cross-classifying sample is summarised in terms of the observed counts, whose joint distribution is multinomial $\left(n_{i j}\right) \sim \operatorname{Mn}\left(n . . ;\left(\pi_{i j}\right)\right)$.

	B_{1}	$\mathrm{~B}_{2}$	\ldots	$\mathrm{~B}_{J}$	Total
A_{1}	n_{11}	n_{12}	\ldots	$n_{1 J}$	$n_{1 .}$
A_{2}	n_{21}	n_{22}	\ldots	$n_{2 J}$	$n_{2 .}$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
A_{I}	$n_{I 1}$	$n_{I 2}$	\ldots	$n_{I J}$	$n_{I .}$
Total	$n_{.1}$	$n_{.2}$	\ldots	$n_{\text {.J }}$	$n_{. .}$

The maximum likelihood estimates of π_{i}. and $\pi_{\cdot j}$ are $\hat{\pi}_{i \cdot}=\frac{n_{i \cdot}}{n . .}$ and $\hat{\pi}_{\cdot j}=\frac{n_{\cdot j}}{n . .}$. Therefore, under the hypothesis of independence $\hat{\pi}_{i j}=\frac{n_{i} \cdot n_{j}}{n_{2}^{2}}$ implying the same expected cell counts as before $\hat{E}_{i j}=n . . \hat{\pi}_{i j}=\frac{n_{i} \cdot n \cdot j}{n . .}$ with the same df $=(I J-1)-(I-1+J-1)=(I-1)(J-1)$.

The same chi-square test rejection rule for the homogeneity test and independence test.
Example (marital status and educational level)
A sample is drawn from a population of married women. Each observation is placed in a 2×2 contingency table depending on woman's educational level and her marital status.

	Married only once	Married more than once	Total
College	$550(523.8)$	$61(87.2)$	611
No college	$681(707.2)$	$144(117.8)$	825
Total	1231	205	1436

The observed chi-square test statistic is $X^{2}=16.01$. With $\mathrm{df}=1$ we can use the normal distribution table, since $Z^{2} \sim \chi_{1}^{2}$ is equivalent to $Z \sim \mathrm{~N}(0,1)$. Thus

$$
\mathrm{P}\left(X^{2}>16.01\right) \approx \mathrm{P}(|Z|>4.001)=2(1-\Phi(4.001))
$$

We see that a P-value is less that 0.1%, and we reject the null hypothesis of independence. College-educated women, once they do marry, are much less likely to divorce.

4 Matched-pairs designs

Example (Hodgkin's disease)

To test H_{0} : tonsillectomy has no influence on the onset of Hodgkin's disease, researchers use cross-classification data of the form

	X	\bar{X}
D	n_{11}	n_{12}
\bar{D}	n_{21}	n_{22}

where the counts distinguish among sampled individual who are
either $D=$ affected (have the Disease) or $\bar{D}=$ unaffected, and
either $X=$ eXposed (had tonsillectomy) or $\bar{X}=$ non-exposed
Three possible sampling designs:
simple random sampling,
prospective study: take an X-sample and a control \bar{X}-sample, then watch who gets affected, retrospective study: take a D-sample and a control \bar{D}-sample, then find who had been exposed.

Since the Hodgkin disease is rare, the incidence of 2 in 10000 , random samples would give counts like $\left(\begin{array}{ll}0 & 0 \\ 0 & n\end{array}\right)$, while prospective case-control studies usually would give $\left(\begin{array}{cc}0 & 0 \\ n_{1} & n_{2}\end{array}\right)$.

Two retrospective case-control studies

Study A: Vianna, Greenwald, Davis (1971), and study B: Johnson and Johnson (1972)

Study A	X	\bar{X}
D	67	34
\bar{D}	43	64

Study B	X	\bar{X}
D	41	44
\bar{D}	33	52

resulted in two chi-square tests of homogeneity $X_{\mathrm{A}}^{2}=14.29, X_{\mathrm{B}}^{2}=1.53, \mathrm{df}=1$. They give two strikingly different P -values:

$$
\mathrm{P}\left(X_{\mathrm{A}}^{2} \geq 14.29\right) \approx 2(1-\Phi(\sqrt{14.29}))=0.0002, \quad \mathrm{P}\left(X_{\mathrm{B}}^{2} \geq 1.53\right) \approx 2(1-\Phi(\sqrt{1.53}))=0.215
$$

The study B was based on a matched-pairs design violating the assumption of the chi-square test of homogeneity. The sample consisted of $n=85$ sibling pairs having same sex and close age: one of the siblings was affected the other not.
A proper summary of the study B sample distinguishes among four groups of sibling pairs: (X, X), $(X, \bar{X}),(\bar{X}, X),(\bar{X}, \bar{X})$

	unaffected X	unaffected \bar{X}	Total
affected X	$n_{11}=26$	$n_{12}=15$	41
affected \bar{X}	$n_{21}=7$	$n_{22}=37$	44
Total	33	52	85

Notice that this contingency table contains more information than the previous one.

McNemar's test

Consider data obtained by matched-pairs design for the population distribution

	unaffected X	unaffected \bar{X}	Total
affected X	π_{11}	π_{12}	$\pi_{1 .}$
affected \bar{X}	π_{21}	π_{22}	$\pi_{2 .}$
$\pi_{.1}$	$\pi_{.2}$	1	

The relevant null hypothesis is not the hypothesis of independence but rather
$H_{0}: \pi_{1 .}=\pi_{.1}$ or equivalently $H_{0}: \pi_{12}=\pi_{21}=\pi$ for an unspecified π.
The maximum likelihood estimates for the population frequencies under the null hypothesis

$$
\hat{\pi}_{11}=\frac{n_{11}}{n}, \quad \hat{\pi}_{22}=\frac{n_{22}}{n}, \quad \hat{\pi}=\frac{n_{12}+n_{21}}{2 n}
$$

yield a new chi-square test statistic

$$
X_{\mathrm{McNemar}}^{2}=\sum_{i} \sum_{j} \frac{\left(n_{i j}-n \hat{\pi}_{i j}\right)^{2}}{n \hat{\pi}_{i j}}=\frac{\left(n_{12}-n_{21}\right)^{2}}{n_{12}+n_{21}}
$$

whose approximate null distribution is χ_{1}^{2}. Reject the H_{0} for large values of X_{McNemar}^{2}.

Example (Hodgkin's disease)
The data of study B give $X_{\text {McNemar }}^{2}=2.91$ and a P -value $=0.09$ which is much smaller than that of 0.215 computed using the test of homogeneity. Too few informative, only $n_{12}+n_{21}=22$, observations.

5 Odds ratios

Odds and probability of a random event $A: \quad \operatorname{odds}(A)=\frac{\mathrm{P}(A)}{\mathrm{P}(\bar{A})} \quad$ and $\quad \mathrm{P}(A)=\frac{\operatorname{odds}(A)}{1+\operatorname{odds}(A)}$.
Notice that odds $(A) \approx \mathrm{P}(A)$ for small $\mathrm{P}(A)$.
Conditional odds for A given B :

$$
\operatorname{odds}(A \mid B)=\frac{\mathrm{P}(A \mid B)}{\mathrm{P}(\bar{A} \mid B)}=\frac{\mathrm{P}(A B)}{\mathrm{P}(\bar{A} B)} .
$$

Odds ratio for a pair of events

$$
\Delta_{A B}=\frac{\operatorname{odds}(A \mid B)}{\operatorname{odds}(A \mid \bar{B})}=\frac{\mathrm{P}(A B) \mathrm{P}(\bar{A} \bar{B})}{\mathrm{P}(\bar{A} B) \mathrm{P}(A \bar{B})}, \quad \Delta_{A B}=\Delta_{B A}, \quad \Delta_{A \bar{B}}=\frac{1}{\Delta_{A B}}
$$

is a measure of dependence between the two random events
if $\Delta_{A B}=1$, then events A and B are independent,
if $\Delta_{A B}>1$, then $\mathrm{P}(A \mid B)>\mathrm{P}(A \mid \bar{B})$ so that B increases probability of A, in particular, $\Delta_{A A}=\infty$,
if $\Delta_{A B}<1$, then $\mathrm{P}(A \mid B)<\mathrm{P}(A \mid \bar{B})$ so that B decreases probability of A, in particular, $\Delta_{A \bar{A}}=0$.
Odds ratios for case-control studies
Return to conditional probabilities and observed counts

	X	\bar{X}	Total		X	\bar{X}	Total
D	$\mathrm{P}(X \mid D)$	$\mathrm{P}(\bar{X} \mid D)$	1	D	n_{11}	n_{12}	n_{1}.
\bar{D}	$\mathrm{P}(X \mid \bar{D})$	$\mathrm{P}(\bar{X} \mid \bar{D})$	1	\bar{D}	n_{21}	n_{22}	n_{2}.

The corresponding odds ratio $\Delta_{D X}=\frac{\mathrm{P}(X \mid D) \mathrm{P}(\bar{X} \mid \bar{D})}{\mathrm{P}(\bar{X} \mid D) \mathrm{P}(X \mid \bar{D})}$ measures the influence of eXposition to a certain factor on the onset of the Disease in question. Estimated odds ratio

$$
\hat{\Delta}_{D X}=\frac{\left(n_{11} / n_{1} \cdot\right)\left(n_{22} / n_{2 \cdot}\right)}{\left(n_{12} / n_{1} \cdot\right)\left(n_{21} / n_{2} \cdot\right)}=\frac{n_{11} n_{22}}{n_{12} n_{21}}
$$

Example (Hodgkin's disease)
Study A gives the odds ratio $\hat{\Delta}_{D X}=\frac{67.64}{43.34}=2.93$.
Conclusion: tonsillectomy increases the odds for Hodgkin's onset by factor 2.93.
Study B gives the odds ratio $\hat{\Delta}_{D X}=\frac{41.52}{33 \cdot 44}=1.47$.

