Chapter 14. Linear least squares

1 Simple linear regression model

A linear model for the random response $Y=Y(x)$ to an independent variable $X=x$. For a given set of values $\left(x_{1}, \ldots, x_{n}\right)$ of the independent variable put

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n,
$$

assuming that the noise vector $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ has independent $\mathrm{N}\left(0, \sigma^{2}\right)$ random components. Given the data $\left(y_{1}, \ldots, y_{n}\right)$, the model is characterised by the likelihood function of three parameters $\beta_{0}, \beta_{1}, \sigma^{2}$

$$
L\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{2 \sigma^{2}}\right\}=(2 \pi)^{-n / 2} \sigma^{-n} e^{-\frac{S\left(\beta_{0}, \beta_{1}\right)}{2 \sigma^{2}}},
$$

where $S\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}$. Observe that

$$
n^{-1} S\left(\beta_{0}, \beta_{1}\right)=n^{-1} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}=\beta_{0}^{2}+2 \beta_{0} \beta_{1} \bar{x}-2 \beta_{0} \bar{y}-2 \beta_{1} \overline{x y}+\beta_{1}^{2} \overline{x^{2}}+\overline{y^{2}} .
$$

Least squares estimates

Regression lines: true $y=\beta_{0}+\beta_{1} x$ and fitted $y=b_{0}+b_{1} x$. We want to find $\left(b_{0}, b_{1}\right)$ such that the observed responses y_{i} are approximated by the predicted responses $\hat{y}_{i}=b_{0}+b_{1} x_{i}$ in an optimal way. Least squares method: find $\left(b_{0}, b_{1}\right)$ minimising the sum of squares $S\left(b_{0}, b_{1}\right)=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$.

From $\partial S / \partial b_{0}=0$ and $\partial S / \partial b_{1}=0$ we get the so-called Normal Equations:

$$
\left\{\begin{array} { l }
{ b _ { 0 } + b _ { 1 } \overline { x } = \overline { y } } \\
{ b _ { 0 } \overline { x } + b _ { 1 } \overline { x ^ { 2 } } = \overline { x y } }
\end{array} \quad \text { implying } \quad \left\{\begin{array}{l}
b_{1}=\frac{\overline{x y}-\bar{x} \bar{y}}{\overline{x^{2}}-\bar{x}^{2}}=\frac{r s_{y}}{s_{x}} \\
b_{0}=\bar{y}-b_{1} \bar{x}
\end{array}\right.\right.
$$

The least square regression line $y=b_{0}+b_{1} x$ takes the form $y=\bar{y}+r \frac{s_{y}}{s_{x}}(x-\bar{x})$.
sample variances $s_{x}^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}, s_{y}^{2}=\frac{1}{n-1} \sum\left(y_{i}-\bar{y}\right)^{2}$,
sample covariance $s_{x y}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$,
sample correlation coefficient $r=\frac{s_{x y}}{s_{x} s_{y}}$.
The least square estimates $\left(b_{0}, b_{1}\right)$ are the maximum likelihood estimates of $\left(\beta_{0}, \beta_{1}\right)$.
The least square estimates $\left(b_{0}, b_{1}\right)$ are not robust: outliers exert leverage on the fitted line.

2 Residuals

The estimated regression line predicts the responses to the values of the explanatory variable by $\hat{y}_{i}=\bar{y}+r \frac{s_{y}}{s_{x}}\left(x_{i}-\bar{x}\right)$. The noise in the observed responses y_{i} is represented by the residuals
$e_{i}=y_{i}-\hat{y}_{i}=y_{i}-\bar{y}-r \frac{s_{y}}{s_{x}}\left(x_{i}-\bar{x}\right)$,
$e_{1}+\ldots+e_{n}=0, \quad x_{1} e_{1}+\ldots+x_{n} e_{n}=0, \quad \hat{y}_{1} e_{1}+\ldots+\hat{y}_{n} e_{n}=0$.

Residuals e_{i} have normal distributions with zero mean and

$$
\operatorname{Var}\left(e_{i}\right)=\sigma^{2}\left(1-\frac{\sum_{k}\left(x_{k}-x_{i}\right)^{2}}{n(n-1) s_{x}^{2}}\right), \quad \operatorname{Cov}\left(e_{i}, e_{j}\right)=-\sigma^{2} \cdot \frac{\sum_{k}\left(x_{k}-x_{i}\right)\left(x_{k}-x_{j}\right)}{n(n-1) s_{x}^{2}} .
$$

Error sum of squares

$$
\mathrm{SSE}=\sum_{i} e_{i}^{2}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}-2 r \frac{s_{y}}{s_{x}} n(\overline{x y}-\bar{y} \bar{x})+r^{2} \frac{s_{y}^{2}}{s_{x}^{2}} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}=(n-1) s_{y}^{2}\left(1-r^{2}\right) .
$$

$$
\text { Corrected maximum likelihood estimate of } \sigma^{2}: \quad s^{2}=\frac{\text { SSE }}{n-2}=\frac{n-1}{n-2} s_{y}^{2}\left(1-r^{2}\right)
$$

Using $y_{i}-\bar{y}=\hat{y}_{i}-\bar{y}+e_{i}$ we obtain $\mathrm{SST}=\mathrm{SSR}+\mathrm{SSE}$,
$\mathrm{SST}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=(n-1) s_{y}^{2}$ is the total sum of squares,
$\operatorname{SSR}=\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}=(n-1) b_{1}^{2} s_{x}^{2}$ is the regression sum of squares.

$$
\text { Coefficient of determination } r^{2}=\frac{\text { SSR }}{\text { SST }}=1-\frac{\text { SSE }}{\text { SST }}
$$

Coefficient of determination is the proportion of variation in Y explained by main factor X. Thus r^{2} has a more transparent meaning than the correlation coefficient r.

To test the normality assumption use the normal distribution plot for the standardized residuals $\frac{e_{i}}{s_{i}}$, where $s_{i}=s \sqrt{1-\frac{\sum_{k}\left(x_{k}-x_{i}\right)^{2}}{n(n-1) s_{x}^{2}}}$ are the estimated standard deviations of e_{i}.
The expected plot of the standardised residuals versus x_{i} is a horizontal blur (linearity), variance does not depend on x (homoscedasticity).

Example (flow rate vs stream depth)
For this example with $n=10$, the scatter plot looks slightly non-linear. The residual plot gives a clearer picture having the U-shape. After the log-log transformation, the scatter plot is closer to linear and the residual plot has a horizontal profile.

3 Confidence intervals and hypothesis testing

The list square estimators $\left(b_{0}, b_{1}\right)$ are unbiased and consistent. Due to the normality assumption we have the following exact distributions

$$
\begin{array}{llll}
b_{0} \sim \mathrm{~N}\left(\beta_{0}, \sigma_{0}^{2}\right), & \sigma_{0}^{2}=\frac{\sigma^{2} \cdot x_{i}^{2}}{n(n-1) s_{x}^{2}}, & \frac{b_{0}-\beta_{0}}{s_{b_{0}}} \sim t_{n-2}, & s_{b_{0}}=\frac{s \sqrt{\sum x_{i}^{2}}}{s_{x} \sqrt{n(n-1)}}, \\
b_{1} \sim \mathrm{~N}\left(\beta_{1}, \sigma_{1}^{2}\right), & \sigma_{1}^{2}=\frac{\sigma^{2}}{(n-1) s_{x}^{2}}, & \frac{b_{1}-\beta_{1}}{s_{b_{1}}} \sim t_{n-2}, & s_{b_{1}}=\frac{s}{s_{x} \sqrt{n-1}} .
\end{array}
$$

Weak dependence between the two estimators: $\operatorname{Cov}\left(b_{0}, b_{1}\right)=-\frac{\sigma^{2} \cdot \bar{x}}{(n-1) s_{x}^{2}}$.

$$
\text { Exact } 100(1-\alpha) \% \text { CI for } \beta_{i}: \quad b_{i} \pm t_{n-2}\left(\frac{\alpha}{2}\right) \cdot s_{b_{i}}
$$

Hypothesis testing H_{0} : $\beta_{i}=\beta_{i 0}$: test statistic $T=\frac{b_{i}-\beta_{i 0}}{s_{b_{i}}}$, exact null distribution $T \sim t_{n-2}$. Model utility test and zero-intercept test
$H_{0}: \beta_{1}=0$ (no relationship between X and Y), test statistic $T=b_{1} / s_{b_{1}}$, null distribution $T \sim t_{n-2}$. $H_{0}: \beta_{0}=0$, test statistic $T=b_{0} / s_{b_{0}}$, null distribution $T \sim t_{n-2}$.

Intervals for individual observations

Given x predict the value y for the random variable $Y=\beta_{0}+\beta_{1} \cdot x+\epsilon$. Its expected value $\mu=\beta_{0}+\beta_{1} \cdot x$ has the least square estimate $\hat{\mu}=b_{0}+b_{1} \cdot x$.
The standard error of $\hat{\mu}$ is computed as the square root of $\operatorname{Var}(\hat{\mu})=\frac{\sigma^{2}}{n}+\frac{\sigma^{2}}{n-1} \cdot\left(\frac{x-\bar{x}}{s_{x}}\right)^{2}$.
Exact $100(1-\alpha) \%$ confidence interval for the mean $\mu: b_{0}+b_{1} x \pm t_{n-2}\left(\frac{\alpha}{2}\right) \cdot s \sqrt{\frac{1}{n}+\frac{1}{n-1}\left(\frac{x-\bar{x}}{s_{x}}\right)^{2}}$
Exact $100(1-\alpha) \%$ prediction interval for $y: b_{0}+b_{1} x \pm t_{n-2}\left(\frac{\alpha}{2}\right) \cdot s \sqrt{1+\frac{1}{n}+\frac{1}{n-1}\left(\frac{x-\bar{x}}{s_{x}}\right)^{2}}$
Prediction interval has wider limits $\operatorname{Var}(Y-\hat{\mu})=\sigma^{2}+\operatorname{Var}(\hat{\mu})=\sigma^{2}\left(1+\frac{1}{n}+\frac{1}{n-1} \cdot\left(\frac{x-\bar{x}}{s_{x}}\right)^{2}\right)$, since it contains the uncertainty due the noise factors.
Compare these two formulas by drawing the confidence bands around the regression line both for the individual observation y and the mean μ.

4 Linear regression and ANOVA

Recall the two independent samples case from Chapter 11:
first sample $\mu_{1}+\epsilon_{1}, \ldots, \mu_{1}+\epsilon_{n}$,
second sample $\mu_{2}+\epsilon_{n+1}, \ldots, \mu_{2}+\epsilon_{n+m}$,
where the noise variables are independent and identically distributed $\epsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$. This setting is equivalent to the simple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad x_{1}=\ldots=x_{n}=0, \quad x_{n+1}=\ldots=x_{n+m}=1,
$$

with

$$
\mu_{1}=\beta_{0}, \quad \mu_{2}=\beta_{0}+\beta_{1} .
$$

The model utility test $H_{0}: \beta_{1}=0$ is equivalent to the equality test $H_{0}: \mu_{1}=\mu_{2}$.
More generally, for the one-way ANOVA setting with $I=p$ levels for the main factor and $n=p J$ observations

$$
\begin{aligned}
\beta_{0}+\epsilon_{i}, & i=1, \ldots, J, \\
\beta_{0}+\beta_{1}+\epsilon_{i}, & i=J+1, \ldots, 2 J, \\
\ldots & \\
\beta_{0}+\beta_{p-1}+\epsilon_{i}, & i=(p-1) J+1, \ldots, n,
\end{aligned}
$$

we need a multiple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{p-1} x_{i, p-1}+\epsilon_{i}, \quad i=1, \ldots, n
$$

with dummy variables $x_{i, j}$ taking values 0 and 1 so that

$$
\begin{aligned}
x_{i, 1} & =1 \text { only for } i=J+1, \ldots 2 J, \\
x_{i, 2} & =1 \text { only for } i=2 J+1, \ldots 3 J, \\
& \ldots \\
x_{i, p-1} & =1 \text { only for } i=(p-1) J+1, \ldots, n .
\end{aligned}
$$

5 Multiple linear regression

Consider a linear regression model

$$
Y=\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{p-1} x_{p-1}+\epsilon, \quad \epsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)
$$

with $p-1$ explanatory variables and a homoscedastic noise. This is an extension of the simple linear regression model with $p=2$.

The corresponding data set consists of observations $\left(y_{1}, \ldots, y_{n}\right)$ with $n>p$, which are realisations of n independent random variables

$$
\begin{aligned}
Y_{1} & =\beta_{0}+\beta_{1} x_{1,1}+\ldots+\beta_{p-1} x_{1, p-1}+\epsilon_{1} \\
& \ldots \\
Y_{n} & =\beta_{0}+\beta_{1} x_{n, 1}+\ldots+\beta_{p-1} x_{n, p-1}+\epsilon_{n}
\end{aligned}
$$

In the matrix notation the column vector $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$ is a realisation of $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where

$$
\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}, \quad \boldsymbol{\beta}=\left(\beta_{0}, \ldots, \beta_{p-1}\right)^{T}, \quad \boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)^{T}
$$

are column vectors, and \mathbf{X} is the so called design matrix

$$
\mathbf{X}=\left(\begin{array}{cccc}
1 & x_{1,1} & \ldots & x_{1, p-1} \\
\ldots & \ldots & \ldots & \ldots \\
1 & x_{n, 1} & \ldots & x_{n, p-1}
\end{array}\right)
$$

assumed to have rank p. Least square estimates $\mathbf{b}=\left(b_{0}, \ldots, b_{p-1}\right)^{T}$ minimise $S(\mathbf{b})=\|\mathbf{y}-\mathbf{X b}\|^{2}$, where $\|\mathbf{a}\|$ is the length of a vector \mathbf{a}. Solving the normal equations $\mathbf{X}^{T} \mathbf{X b}=\mathbf{X}^{T} \mathbf{y}$ we find the least squares estimates being

$$
\mathbf{b}=\mathbf{M} \mathbf{X}^{T} \mathbf{y}, \quad \mathbf{M}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
$$

Least squares multiple regression: predicted responses $\hat{\mathbf{y}}=\mathbf{X b}=\mathbf{P y}$, where $\mathbf{P}=\mathbf{X M X}^{T}$.
Covariance matrix for the least square estimates $\Sigma_{b b}=\sigma^{2} \mathbf{M}$ is a $p \times p$ matrix with elements $\operatorname{Cov}\left(b_{i}, b_{j}\right)$. The vector of residuals $\mathbf{e}=\mathbf{y}-\hat{\mathbf{y}}=(\mathbf{I}-\mathbf{P}) \mathbf{y}$ have a covariance matrix $\Sigma_{e e}=\sigma^{2}(\mathbf{I}-\mathbf{P})$.

$$
\text { An unbiased estimate of } \sigma^{2} \text { is given by } s^{2}=\frac{\text { SSE }}{n-p}, \quad \text { where SSE }=\|\mathbf{e}\|^{2} .
$$

The standard error of b_{i} is computed as $s_{b_{j}}=s \sqrt{m_{j j}}$, where $m_{j j}$ is a diagonal element of \mathbf{M}.

$$
\text { Exact sampling distributions } \frac{b_{j}-\beta_{j}}{s_{b_{j}}} \sim t_{n-p}, \quad j=1, \ldots, p-1 .
$$

Inspect the normal probability plot for the standardised residuals $\frac{y_{i}-\hat{y}_{i}}{s \sqrt{1-p_{i i}}}$, where $p_{i i}$ are the diagonal elements of \mathbf{P}.

Coefficient of multiple determination can be computed similarly to the simple linear regression model as $R^{2}=1-\frac{\text { SSE }}{\text { SST }}$, where $\operatorname{SST}=(n-1) s_{y}^{2}$. The problem with R^{2} is that it increases even if irrelevant variables are added to the model. To punish for irrelevant variables it is better to use the adjusted coefficient of multiple determination

$$
R_{a}^{2}=1-\frac{n-1}{n-p} \cdot \frac{\mathrm{SSE}}{\mathrm{SST}}=1-\frac{s^{2}}{s_{y}^{2}} .
$$

The adjustment factor $\frac{n-1}{n-p}$ gets larger for the larger values of p.
Example (flow rate vs stream depth)
The multiple linear regression framework works for the quadratic model $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$. The residuals show no sign of systematic misfit. Linear and quadratic terms are statistically significant

Coefficient	Estimate	Standard Error	t Value
β_{0}	1.68	1.06	1.52
β_{1}	-10.86	4.52	-2.40
β_{2}	23.54	4.27	5.51

Example (catheter length)
Doctors want predictions on heart catheter length depending on child's height and weight. The pairwise scatterplots for the data of size $n=12$ suggests two simple linear regressions

Estimate	Height	t Value	Weight	t Value
$b_{0}\left(s_{b_{0}}\right)$	$12.1(4.3)$	2.8	$25.6(2.0)$	12.8
$b_{1}\left(s_{b_{1}}\right)$	$0.60(0.10)$	6.0	$0.28(0.04)$	7.0
s	4.0		3.8	
$r^{2}\left(R_{a}^{2}\right)$	$0.78(0.76)$		$0.80(0.78)$	

The plots of standardised residuals do not contradict the normality assumptions.
The simple regression models should be compared to the multiple regression model $L=\beta_{0}+\beta_{1} H+\beta_{2} W$, which gives

$$
\begin{array}{lll}
b_{0}=21, & s_{b_{0}}=8.8, & b_{0} / s_{b_{0}}=2.39 \\
b_{1}=0.20, & s_{b_{1}}=0.36, & b_{1} / s_{b_{1}}=0.56, \\
b_{2}=0.19, & s_{b_{2}}=0.17, & b_{2} / s_{b_{2}}=1.12 \\
s=3.9, & R^{2}=0.81, & R_{a}^{2}=0.77
\end{array}
$$

In contrast to the simple models, we can not reject neither $H_{1}: \beta_{1}=0$ nor $H_{2}: \beta_{2}=0$. This paradox is explained by different meaning of the slope parameters in the simple and multiple regression models. In the multiple model β_{1} is the expected change in L when H increased by one unit and W held constant.

Collinearity problem: height and weight have a strong linear relationship. The fitted plane has a well resolved slope along the line about which the (H, W) points fall and poorly resolved slopes along the H and W axes.

Conclusion: since the simple model $L=\beta_{0}+\beta_{1} W$ gives the highest adjusted coefficient of determination, there is little or no gain from adding H to the regression model model with a single explanatory variable W.

