Serik Sagitov, Chalmers and GU, March 14, 2016

Introduction to Bayesian inference

1 Bayesian approach

The main idea of the Baysian approach is to treat the population parameter θ as a random variable, where the source of randomness is the luck of knowledge. Two distributions of θ
prior distribution density $g(\theta)$ brings into the model the knowledge on θ before data is collected, posterior distribution $h(\theta \mid x)$ updates the knowledge on θ using the collected data x.

$$
\text { Bayes formula } h(\theta \mid x)=\frac{f(x \mid \theta) g(\theta)}{\phi(x)} \quad \text { Posterior } \propto \text { likelihood } \times \text { prior }, \propto \text { means proportional. }
$$

Marginal distribution of the data X has density $\phi(x)=\int f(x \mid \theta) g(\theta) d \theta$. For a given x, the constant $\phi(x)$ is the likelihood $f(x \mid \theta)$ of the data value x averaged over different values of θ using the prior distribution.

Uninformative prior: when we have no prior knowledge of θ, the prior distribution is often modelled by the uniform distribution. In the uniform case, since $g(\theta) \propto$ constant, we have $h(\theta \mid x) \propto f(x \mid \theta)$ so that all the posterior knowledge comes from the likelihood function.

Example (IQ measurement)
A randomly chosen individual has an unknown true intelligence quotient value θ. Its prior distribution is $\theta \sim \mathrm{N}(100,225)$. This normal distribution describes the whole population with mean IQ of $m=100$ and standard deviation $v=15$.
Given a true personal value θ, the result of an IQ measurement has distribution $X \sim \mathrm{~N}(\theta, 100)$, with no systematic error and a random error $\sigma=10$. Since

$$
g(\theta)=\frac{1}{\sqrt{2 \pi} v} e^{-\frac{(\theta-m)^{2}}{2 v^{2}}}, \quad f(x \mid \theta)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\theta)^{2}}{2 \sigma^{2}}},
$$

and the posterior is proportional to $g(\theta) f(x \mid \theta)$, we find that $h(\theta \mid x)$ is proportional to

$$
e^{-\frac{(\theta-m)^{2}}{2 v^{2}}} e^{-\frac{(x-\theta)^{2}}{2 \sigma^{2}}}=\exp \left\{-\frac{(\theta-m)^{2}}{2 v^{2}}-\frac{(x-\theta)^{2}}{2 \sigma^{2}}\right\}=\exp \left\{-\frac{(\theta-\gamma m-(1-\gamma) x)^{2}}{2 \gamma v^{2}}\right\}
$$

where $\gamma=\frac{\sigma^{2}}{\sigma^{2}+v^{2}}$ is the so-called shrinkage factor. We conclude that the posterior distribution is normal $h(\theta \mid x)=\frac{1}{\sqrt{2 \pi \gamma v}} e^{-\frac{(\theta-\gamma m-(1-\gamma) x)^{2}}{2 \gamma v^{2}}}$ with mean $\gamma m+(1-\gamma) x$ and variance γv^{2}.

Suppose that the observed IQ result is $x=130$, then the posterior distribution becomes $\mathrm{N}(120.7,69.2)$. We see that the prior expectation $m=100$ has corrected the observed result $x=130$ down to 120.7 . The posterior variance 69.2 is smaller than that of the prior distribution 225 by the shrinkage factor $\gamma=0.308$: the updated knowledge is less uncertain than the prior knowledge.

2 Conjugate priors

Suppose we have two parametric families of probability distributions \mathcal{G} and \mathcal{H}.
\mathcal{G} is called a family of conjugate priors to \mathcal{H}, if a \mathcal{G}-prior and a \mathcal{H}-likelihood give a \mathcal{G}-posterior.
Beta distribution Beta (a, b)
has density, mean, and variance

$$
f(p)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} p^{a-1}(1-p)^{b-1}, \quad 0<p<1, \quad \mu=\frac{a}{a+b}, \quad \sigma^{2}=\frac{\mu(1-\mu)}{a+b+1}
$$

Parameters $a>0, b>0$ determining the shape of the distribution are called pseudo-counts. Uniform distribution is obtained with $a=b=1$.
Exercise: verify that for given $a>1$ and $b>1$, the maximum of density function $f(p)$ is attained at

$$
\hat{p}=\frac{a-1}{a+b-2} .
$$

Dirichlet distribution $\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$

has density $f\left(p_{1}, \ldots, p_{r}\right)=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{r}\right)} p_{1}^{\alpha_{1}-1} \ldots p_{r}^{\alpha_{r}-1}$ with non-negative $p_{1}+\ldots+p_{r}=1$, positive pseudo-counts $\alpha_{1}, \ldots, \alpha_{r}, \alpha_{0}=\alpha_{1}+\ldots+\alpha_{r}$.
Dirichlet distribution is a multivariate extension of the beta distribution marginal distributions $p_{j} \sim \operatorname{Beta}\left(\alpha_{j}, \alpha_{0}-\alpha_{j}\right), j=1, \ldots, r$, negative covariances $\operatorname{Cov}\left(p_{1}, p_{2}\right)=-\frac{\alpha_{1} \alpha_{2}}{\alpha_{0}^{2}\left(\alpha_{0}+1\right)}$.

List of conjugate prior models

Data distribution	Prior	Posterior distribution	Comments
$\left(X_{1}, \ldots, X_{n}\right), X_{i} \sim \mathrm{~N}\left(\theta, \sigma^{2}\right)$	$\mu \sim \mathrm{N}\left(m, v^{2}\right)$	$\mathrm{N}\left(\gamma_{n} m+\left(1-\gamma_{n}\right) \bar{x} ; \gamma_{n} v^{2}\right)$	$(1),(3),(4)$
$X \sim \operatorname{Bin}(n, p)$	$p \sim \operatorname{Beta}(a, b)$	$\operatorname{Beta}(a+x, b+n-x)$	$(2),(3),(4)$
$\left(X_{1}, \ldots, X_{r}\right) \sim \operatorname{Mn}\left(n ; p_{1}, \ldots, p_{r}\right)$	$\operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$	$\mathrm{D}\left(\alpha_{1}+x_{1}, \ldots, \alpha_{r}+x_{r}\right)$	$(2),(3),(4)$
$X \sim \operatorname{Pois}(\mu)$	$\mu \sim \Gamma(\alpha, \lambda)$	$\Gamma(\alpha+x, \lambda+1)$	$(3),(4)$
$X \sim \operatorname{Exp}(\rho)$	$\rho \sim \Gamma(\alpha, \lambda)$	$\Gamma(\alpha+1, \lambda+x)$	$(3),(4)$

(1) the shrinkage factor for n measurements is $\gamma_{n}=\frac{\sigma^{2}}{\sigma^{2}+n v^{2}}$
(2) the update rule: posterior pseudo-counts $=$ prior pseudo-counts plus sample counts
(3) posterior variance is always smaller than the prior variance
(4) the contribution of the prior distribution becomes smaller for larger samples

Example (beta-binomial model)
Consider the probability p of a thumbtack landing on its base. Uninformative prior for p : the uniform over $[0,1]$ distribution. Data: the number of base landings $X \sim \operatorname{Bin}(n, p)$ for n tossings of the thumbtack.
Experiment 1: $n_{1}=10$ tosses, counts $x_{1}=2, n_{1}-x_{1}=8$, prior distribution Beta $(1,1)$ with mean $\mu_{0}=0,5$ and standard deviation $\sigma_{0}=0.29$, posterior distribution Beta $(3,9)$ with mean $\hat{p}=\frac{3}{12}=0.25$ and standard deviation $\sigma_{1}=0.12$.
Experiment 2: $n_{2}=40$ tosses, counts $x_{2}=9, n_{2}-x_{2}=31$, prior distribution Beta(3, 9), posterior distribution $\operatorname{Beta}(12,40)$ with mean $\hat{p}=\frac{12}{52}=0.23$ and standard deviation $\sigma_{2}=0.06$.

3 Bayesian estimation

In the language of decision theory we are searching for an optimal action $\{$ assign value a to unknown parameter θ \}.
The optimal a depends on the choice of the loss function $l(\theta, a)$. Bayes action minimises posterior risk

$$
R(a \mid x)=\int l(\theta, a) h(\theta \mid x) d \theta \quad \text { or } \quad R(a \mid x)=\sum_{\theta} l(\theta, a) h(\theta \mid x) .
$$

We consider two loss functions leading to two Bayesian estimators.

$$
\text { Zero-one loss function: } l(\theta, a)=1_{\{\theta \neq a\}}
$$

$$
\text { Squared error loss: } l(\theta, a)=(\theta-a)^{2}
$$

MAP (maximum a posteriori probability)
Using the zero-one loss function we find that the posterior risk is the probability of misclassification $R(a \mid x)=\sum_{\theta \neq a} h(\theta \mid x)=1-h(a \mid x)$.
To minimise the risk we have to maximise the posterior probability: define $\hat{\theta}_{\text {map }}$ as the value of θ that maximises $h(\theta \mid x)$. With the uninformative prior, $\hat{\theta}_{\text {map }}=\hat{\theta}_{\text {mle }}$.

PME (posterior mean estimate)
Using the squared error loss function we find that the posterior risk is a sum of two components

$$
R(a \mid x)=\mathrm{E}\left((\theta-a)^{2} \mid x\right)=\operatorname{Var}(\theta \mid x)+[\mathrm{E}(\theta \mid x)-a]^{2} .
$$

We minimise the posterior risk by putting $\hat{\theta}_{\text {pme }}=\mathrm{E}(\theta \mid x)$.
Example (loaded die experiment)
A possibly loaded die is rolled 18 times, 211453324142343515 . Parameter of interest $\theta=\left(p_{1}, \ldots, p_{6}\right)$.
Take the uninformative prior distribution $\operatorname{Dir}(1,1,1,1,1,1)$ and compare two Bayesian estimates
$\hat{\theta}_{\text {map }}=\hat{\theta}_{\text {mle }}=\left(\frac{4}{18}, \frac{3}{18}, \frac{4}{18}, \frac{4}{18}, \frac{3}{18}, 0\right)$ is based only on the sample counts,
$\hat{\theta}_{\text {pme }}=\left(\frac{5}{24}, \frac{4}{24}, \frac{5}{24}, \frac{5}{24}, \frac{4}{24}, \frac{1}{24}\right)$ uses pseudo-counts.
Observe that the maximum likelihood estimate assigns value zero to p_{6}, thereby excluding sixes in future observations.

4 Credibility interval

Confidence interval formulas: θ is an unknown constant and a the confidence interval is random $\mathrm{P}\left(\theta_{0}(X)<\theta<\theta_{1}(X)\right)=1-\alpha$.
A credibility interval (CrI) is treated as a nonrandom interval while θ is a random variable. A CrI is computed from the posterior distribution $\mathrm{P}\left(\theta_{0}(x)<\theta<\theta_{1}(x)\right)=1-\alpha$.

Example (IQ measurement)
Given $n=1, \bar{X} \sim \mathrm{~N}(\mu ; 100)$ a $95 \% \mathrm{CI}$ for μ is $130 \pm 1.96 \cdot 10=130 \pm 19.6$.
Posterior distribution of μ is $\mathrm{N}(120.7$; 69.2)
$95 \% \mathrm{CrI}$ for μ is $120.7 \pm 1.96 \cdot \sqrt{69.2}=120.7 \pm 16.3$.

5 Bayesian hypotheses testing

We consider the case of two simple hypotheses. Choose between $H_{0}: \theta=\theta_{0}$ and $H_{1}: \theta=\theta_{1}$ using not only the likelihoods of the data $f\left(x \mid \theta_{0}\right), f\left(x \mid \theta_{1}\right)$ but also prior probabilities $\mathrm{P}\left(H_{0}\right)=\pi_{0}, \mathrm{P}\left(H_{1}\right)=\pi_{1}$. The rejection region \mathcal{R} for the data X is found in terms of a cost function:

Cost values

	Decision	H_{0} true	H_{1} true
$X \notin \mathcal{R}$	Accept H_{0}	0	c_{1}
$X \in \mathcal{R}$	Accept H_{1}	c_{0}	0

For a given set \mathcal{R}, the average cost is the weighted mean of two values c_{0} and c_{1}

$$
c_{0} \pi_{0} \mathrm{P}\left(X \in \mathcal{R} \mid \theta_{0}\right)+c_{1} \pi_{1} \mathrm{P}\left(X \notin \mathcal{R} \mid \theta_{1}\right)=c_{1} \pi_{1}+\int_{\mathcal{R}}\left(c_{0} \pi_{0} f\left(x \mid \theta_{0}\right)-c_{1} \pi_{1} f\left(x \mid \theta_{1}\right)\right) d x
$$

It follows that the rejection region minimising the average cost is $\mathcal{R}=\left\{x: c_{0} \pi_{0} f\left(x \mid \theta_{0}\right)<c_{1} \pi_{1} f\left(x \mid \theta_{1}\right)\right\}$. The optimal decision rule:
reject H_{0} for small values of the likelihood ratio $\frac{f\left(x \mid \theta_{0}\right)}{f\left(x \mid \theta_{1}\right)}<\frac{c_{1} \pi_{1}}{c_{0} \pi_{0}}$,
or in other terms, for small posterior odds $\frac{h\left(\theta_{0} \mid x\right)}{h\left(\theta_{1} \mid x\right)}<\frac{c_{1}}{c_{0}}$.
Example (rape - a case study)
The defendant A, age 37, local, is charged with rape.
The jury have to choose between two alternative hypotheses H_{0} : A is innocent, H_{1} : A is guilty.
Uninformative prior probability $\pi_{1}=\frac{1}{200,000}$. Prior to the evidence is taken into account any of 200 000 males in the appropriate group could be guilty.

Three pieces of evidence which are conditionally independent
E_{1} : strong DNA match, $\mathrm{P}\left(E_{1} \mid H_{0}\right)=\frac{1}{200,000,000}, \mathrm{P}\left(E_{1} \mid H_{1}\right)=1$, E_{2} : defendant A is not recognised by the victim,
E_{3} : an alibi supported by the girlfriend.
Assumptions
$\mathrm{P}\left(E_{2} \mid H_{1}\right)=0.1, \mathrm{P}\left(E_{2} \mid H_{0}\right)=0.9$,
$\mathrm{P}\left(E_{3} \mid H_{1}\right)=0.25, \mathrm{P}\left(E_{3} \mid H_{0}\right)=0.5$.
Posterior odds ratio

$$
\frac{\mathrm{P}\left(H_{0} \mid E\right)}{\mathrm{P}\left(H_{1} \mid E\right)}=\frac{\pi_{0} \mathrm{P}\left(E \mid H_{0}\right)}{\pi_{1} \mathrm{P}\left(E \mid H_{1}\right)}=\frac{\pi_{0} \mathrm{P}\left(E_{1} \mid H_{0}\right) \mathrm{P}\left(E_{2} \mid H_{0}\right) \mathrm{P}\left(E_{3} \mid H_{0}\right)}{\pi_{1} \mathrm{P}\left(E_{1} \mid H_{1}\right) \mathrm{P}\left(E_{2} \mid H_{1}\right) \mathrm{P}\left(E_{3} \mid H_{1}\right)}=0.018 .
$$

Reject H_{0} if $\quad \frac{c_{1}}{c_{0}}=\frac{\text { cost for unpunished crime }}{\text { cost for punishing an innocent }}>0.018$.
Prosecutor's fallacy: $\mathrm{P}\left(H_{0} \mid E\right)=\mathrm{P}\left(E \mid H_{0}\right)$, which is only true if $\mathrm{P}(E)=\pi_{0}$.
Example: $\pi_{0}=\pi_{1}=1 / 2, \mathrm{P}\left(E \mid H_{0}\right) \approx 0, \mathrm{P}\left(E \mid H_{1}\right) \approx 1$.

