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Introduction to Bayesian inference

1 Bayesian approach

The main idea of the Baysian approach is to treat the population parameter θ as a random variable,
where the source of randomness is the luck of knowledge. Two distributions of θ

prior distribution density g(θ) brings into the model the knowledge on θ before data is collected,
posterior distribution h(θ|x) updates the knowledge on θ using the collected data x.

Bayes formula h(θ|x) = f(x|θ)g(θ)
φ(x)

Posterior ∝ likelihood × prior, ∝ means proportional.

Marginal distribution of the data X has density φ(x) =
∫
f(x|θ)g(θ)dθ. For a given x, the constant

φ(x) is the likelihood f(x|θ) of the data value x averaged over different values of θ using the prior
distribution.

Uninformative prior: when we have no prior knowledge of θ, the prior distribution is often modelled
by the uniform distribution. In the uniform case, since g(θ) ∝ constant, we have h(θ|x) ∝ f(x|θ) so
that all the posterior knowledge comes from the likelihood function.

Example (IQ measurement)
A randomly chosen individual has an unknown true intelligence quotient value θ. Its prior distribution
is θ ∼ N(100, 225). This normal distribution describes the whole population with mean IQ of m = 100
and standard deviation v = 15.
Given a true personal value θ, the result of an IQ measurement has distribution X ∼ N(θ, 100), with
no systematic error and a random error σ = 10. Since

g(θ) =
1√
2πv

e−
(θ−m)2

2v2 , f(x|θ) =
1√
2πσ

e−
(x−θ)2

2σ2 ,

and the posterior is proportional to g(θ)f(x|θ), we find that h(θ|x) is proportional to

e−
(θ−m)2

2v2 e−
(x−θ)2

2σ2 = exp

{
−(θ −m)2

2v2
− (x− θ)2

2σ2

}
= exp

{
−(θ − γm− (1− γ)x)2

2γv2

}
,

where γ = σ2

σ2+v2
is the so-called shrinkage factor. We conclude that the posterior distribution is

normal h(θ|x) = 1√
2πγv

e
− (θ−γm−(1−γ)x)2

2γv2 with mean γm+ (1− γ)x and variance γv2.

Suppose that the observed IQ result is x = 130, then the posterior distribution becomes N(120.7, 69.2).
We see that the prior expectation m = 100 has corrected the observed result x = 130 down to 120.7.
The posterior variance 69.2 is smaller than that of the prior distribution 225 by the shrinkage factor
γ = 0.308: the updated knowledge is less uncertain than the prior knowledge.
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2 Conjugate priors

Suppose we have two parametric families of probability distributions G and H.

G is called a family of conjugate priors to H, if a G-prior and a H-likelihood give a G-posterior.

Beta distribution Beta(a, b)
has density, mean, and variance

f(p) =
Γ(a+ b)

Γ(a)Γ(b)
pa−1(1− p)b−1, 0 < p < 1, µ =

a

a+ b
, σ2 =

µ(1− µ)

a+ b+ 1
.

Parameters a > 0, b > 0 determining the shape of the distribution are called pseudo-counts. Uniform
distribution is obtained with a = b = 1.
Exercise: verify that for given a > 1 and b > 1, the maximum of density function f(p) is attained at

p̂ =
a− 1

a+ b− 2
.

Dirichlet distribution Dir(α1, . . . , αr)

has density f(p1, . . . , pr)=
Γ(α0)

Γ(α1)...Γ(αr)
pα1−1

1 . . . pαr−1
r with non-negative p1 + . . .+ pr = 1,

positive pseudo-counts α1, . . . , αr, α0 = α1 + . . .+ αr.
Dirichlet distribution is a multivariate extension of the beta distribution

marginal distributions pj ∼ Beta(αj, α0 − αj), j = 1, . . . , r,
negative covariances Cov(p1, p2) = − α1α2

α2
0(α0+1)

.

List of conjugate prior models
Data distribution Prior Posterior distribution Comments
(X1, . . . , Xn), Xi ∼ N(θ, σ2) µ ∼ N(m, v2) N(γnm+ (1− γn)x̄; γnv

2) (1), (3), (4)
X ∼ Bin(n, p) p ∼ Beta(a, b) Beta(a+ x, b+ n− x) (2), (3), (4)
(X1, . . . , Xr) ∼ Mn(n; p1, . . . , pr) Dir(α1, . . . , αr) D(α1 + x1, . . . , αr + xr) (2), (3), (4)
X ∼ Pois(µ) µ ∼ Γ(α, λ) Γ(α + x, λ+ 1) (3), (4)
X ∼ Exp(ρ) ρ ∼ Γ(α, λ) Γ(α + 1, λ+ x) (3), (4)

(1) the shrinkage factor for n measurements is γn = σ2

σ2+nv2

(2) the update rule: posterior pseudo-counts = prior pseudo-counts plus sample counts
(3) posterior variance is always smaller than the prior variance
(4) the contribution of the prior distribution becomes smaller for larger samples

Example (beta-binomial model)
Consider the probability p of a thumbtack landing on its base. Uninformative prior for p: the uni-
form over [0,1] distribution. Data: the number of base landings X ∼ Bin(n, p) for n tossings of the
thumbtack.
Experiment 1: n1 = 10 tosses, counts x1 = 2, n1 − x1 = 8, prior distribution Beta(1, 1) with mean
µ0 = 0, 5 and standard deviation σ0 = 0.29, posterior distribution Beta(3, 9) with mean p̂ = 3

12
= 0.25

and standard deviation σ1 = 0.12.
Experiment 2: n2 = 40 tosses, counts x2 = 9, n2 − x2 = 31, prior distribution Beta(3, 9), posterior
distribution Beta(12, 40) with mean p̂ = 12

52
= 0.23 and standard deviation σ2 = 0.06.
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3 Bayesian estimation

In the language of decision theory we are searching for an optimal action
{assign value a to unknown parameter θ}.

The optimal a depends on the choice of the loss function l(θ, a). Bayes action minimises posterior risk

R(a|x) =

∫
l(θ, a)h(θ|x)dθ or R(a|x) =

∑
θ

l(θ, a)h(θ|x).

We consider two loss functions leading to two Bayesian estimators.

Zero-one loss function: l(θ, a) = 1{θ 6=a} Squared error loss: l(θ, a) = (θ − a)2

MAP (maximum a posteriori probability)
Using the zero-one loss function we find that the posterior risk is the probability of misclassification

R(a|x) =
∑

θ 6=a h(θ|x) = 1− h(a|x).

To minimise the risk we have to maximise the posterior probability: define θ̂map as the value of θ that

maximises h(θ|x). With the uninformative prior, θ̂map = θ̂mle.

PME (posterior mean estimate)
Using the squared error loss function we find that the posterior risk is a sum of two components

R(a|x) = E((θ − a)2|x) = Var(θ|x) + [E(θ|x)− a]2.
We minimise the posterior risk by putting θ̂pme = E(θ|x).

Example (loaded die experiment)
A possibly loaded die is rolled 18 times, 211 453 324 142 343 515. Parameter of interest θ = (p1, . . . , p6).
Take the uninformative prior distribution Dir(1,1,1,1,1,1) and compare two Bayesian estimates

θ̂map = θ̂mle = ( 4
18
, 3

18
, 4

18
, 4

18
, 3

18
, 0) is based only on the sample counts,

θ̂pme = ( 5
24
, 4

24
, 5

24
, 5

24
, 4

24
, 1

24
) uses pseudo-counts.

Observe that the maximum likelihood estimate assigns value zero to p6, thereby excluding sixes in
future observations.

4 Credibility interval

Confidence interval formulas: θ is an unknown constant and a the confidence interval is random
P(θ0(X) < θ < θ1(X)) = 1− α.

A credibility interval (CrI) is treated as a nonrandom interval while θ is a random variable. A CrI is
computed from the posterior distribution P(θ0(x) < θ < θ1(x)) = 1− α.

Example (IQ measurement)
Given n = 1, X̄ ∼ N(µ; 100) a 95% CI for µ is 130± 1.96 · 10 = 130± 19.6.
Posterior distribution of µ is N(120.7; 69.2)

95% CrI for µ is 120.7± 1.96 ·
√

69.2 = 120.7± 16.3.
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5 Bayesian hypotheses testing

We consider the case of two simple hypotheses. Choose between H0: θ = θ0 and H1: θ = θ1 using not
only the likelihoods of the data f(x|θ0), f(x|θ1) but also prior probabilities P(H0) = π0, P(H1) = π1.
The rejection region R for the data X is found in terms of a cost function:

Cost values
Decision H0 true H1 true

X /∈ R Accept H0 0 c1

X ∈ R Accept H1 c0 0

For a given set R, the average cost is the weighted mean of two values c0 and c1

c0π0P(X ∈ R|θ0) + c1π1P(X /∈ R|θ1) = c1π1 +

∫
R

(
c0π0f(x|θ0)− c1π1f(x|θ1)

)
dx.

It follows that the rejection region minimising the average cost isR = {x : c0π0f(x|θ0) < c1π1f(x|θ1)}.
The optimal decision rule:

reject H0 for small values of the likelihood ratio f(x|θ0)
f(x|θ1)

< c1π1
c0π0

,

or in other terms, for small posterior odds h(θ0|x)
h(θ1|x)

< c1
c0

.

Example (rape - a case study)
The defendant A, age 37, local, is charged with rape.
The jury have to choose between two alternative hypotheses H0: A is innocent, H1: A is guilty.

Uninformative prior probability π1 = 1
200,000

. Prior to the evidence is taken into account any of 200
000 males in the appropriate group could be guilty.

Three pieces of evidence which are conditionally independent
E1: strong DNA match, P(E1|H0) = 1

200,000,000
, P(E1|H1)=1,

E2: defendant A is not recognised by the victim,
E3: an alibi supported by the girlfriend.

Assumptions
P(E2|H1) = 0.1, P(E2|H0) = 0.9,
P(E3|H1) = 0.25, P(E3|H0) = 0.5.

Posterior odds ratio

P(H0|E)
P(H1|E)

= π0P(E|H0)
π1P(E|H1)

= π0P(E1|H0)P(E2|H0)P(E3|H0)
π1P(E1|H1)P(E2|H1)P(E3|H1)

= 0.018.

Reject H0 if c1
c0

= cost for unpunished crime
cost for punishing an innocent

> 0.018.

Prosecutor’s fallacy: P(H0|E) = P(E|H0), which is only true if P(E) = π0.
Example: π0 = π1 = 1/2, P(E|H0) ≈ 0, P(E|H1) ≈ 1.
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