Chapter 8. Estimation of parameters

Main issue: given a parametric model with unknown parameters θ estimate θ from an IID random sample (X_1, \ldots, X_n) . Two basic methods of finding good estimates

1. method of moments - simple, can be used as a first approximation for the other method,

2. maximum likelihood method - optimal for large samples.

1 List of parametric models

Bernoulli distribution Ber(p):

X = 1 with probability p, and X = 0 with probability q = 1 - p, $\mu = p, \sigma^2 = pq$. Binomial distribution Bin(n, p):

X = number of successes in *n* Bernoulli trials, p = probability of success, q = 1 - p,

 $\mathbf{P}(X=k) = \binom{n}{k} p^k q^{n-k}, \ 0 \le k \le n, \qquad \mu = np, \ \sigma^2 = npq.$

Hypergeometric distribution Hg(N, n, p): sampling n elements out of N without replacement,

$$P(X = k) = \frac{\binom{Np}{k}\binom{n}{n-k}}{\binom{N}{n}}, \ 0 \le k \le \min(n, Np), \qquad \mu = np, \ \sigma^2 = npq(1 - \frac{n-1}{N-1}).$$

Geometric distribution Geom(p):

X = number of Bernoulli trials until the first success,

 $P(X = k) = pq^{k-1}, k \ge 1, \qquad \mu = \frac{1}{p}, \sigma^2 = \frac{q}{p^2}.$ Poisson distribution $Pois(\lambda)$, an approximation for $Bin(n, \lambda/n)$ with large n:

X = number of rare events,

P(X = k) = $\frac{\lambda^k}{k!}e^{-\lambda}$, $k \ge 0$, $\mu = \sigma^2 = \lambda$. Exponential distribution $\text{Exp}(\lambda)$, a continuous version of geometric distribution:

X =life length without aging,

density function $f(x) = \lambda e^{-\lambda x}, x > 0, \qquad \mu = \frac{1}{\lambda}, \sigma^2 = \frac{1}{\lambda^2}.$

Normal distribution $N(\mu, \sigma^2)$,

Central Limit Theorem predicts for the sums of many small almost independent contributions, density function $f(x) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, \quad -\infty < x < \infty.$

Gamma distribution $\operatorname{Gamma}_{(\alpha, \lambda)}^{\chi_{2\pi\sigma}}$ shape parameter $\alpha > 0$ and scale parameter $\lambda > 0$, density function $f(x) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}, x > 0, \qquad \mu = \frac{\alpha}{\lambda}, \sigma^2 = \frac{\alpha}{\lambda^2},$

 $\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx,$ in particular for k = 1, 2, ..., we have $\Gamma(k) = (k - 1)!$

$\mathbf{2}$ Method of moments

Suppose we are given IID sample (X_1, \ldots, X_n) from a parametric population distribution $D(\theta_1, \theta_2)$ with population moments

$$E(X) = f(\theta_1, \theta_2)$$
 and $E(X^2) = g(\theta_1, \theta_2)$.

Method of moments estimators $(\tilde{\theta}_1, \tilde{\theta}_2)$ are found after replacing the population moment with sample moments, and then solving the equations $\overline{X} = f(\theta_1, \theta_2)$ and $\overline{X^2} = g(\theta_1, \theta_2)$.

Example (geometric model)

Data X_i = number of hops that a bird does between flights, n = 130:

Number of hops	1	2	3	4	5	6	7	8	9	10	11	12	Tot
Number of birds (Observed frequency)	48	31	20	9	6	5	4	2	1	1	2	1	130

Summary statistics $\frac{\bar{X} = \frac{\text{total number of hops}}{\text{number of birds}} = \frac{363}{130} = 2.79, \\
\overline{X^2} = 1^2 \cdot \frac{48}{130} + 2^2 \cdot \frac{31}{130} + \ldots + 11^2 \cdot \frac{2}{130} + 12^2 \cdot \frac{1}{130} = 13.20, \\
s^2 = \frac{130}{129} (\overline{X^2} - \overline{X}^2) = 5.47,$ $s_{\bar{X}} = \sqrt{\frac{5.47}{130}} = 0.205.$

An approximate 95% CI for μ , the mean number of hops per bird:

 $X \pm z_{0.025} \cdot s_{\bar{X}} = 2.79 \pm 1.96 \cdot 0.205 = 2.79 \pm 0.40.$

Geometric model $X \sim \text{Geom}(p)$ assumes that a bird does not "remember" the number of jumps made so far. Method of moment estimate for p:

from $\mu = 1/p$ we build an equation $\bar{X} = 1/\tilde{p}$ and find $\tilde{p} = 1/\bar{X} = 0.358$. We can compute an approximate 95% CI for p using the above CI for μ :

 $\left(\frac{1}{2.79+0.40}, \frac{1}{2.79-0.40}\right) = (0.31, 0.42).$

Model fit question: does the geometric distribution fit the data? To answer, compare the observed frequencies to expected frequencies:

j	1	2	3	4	5	6	7+
O_j	48	31	20	9	6	5	11
E_j	46.5	29.9	19.2	12.3	7.9	5.1	9.1

Expected frequencies are computed using geometric distribution with the estimated parameter value:

 $E_j = E(O_j | \text{model}) = n\tilde{q}^{j-1}\tilde{p} = 130 \cdot (0.642)^{j-1} (0.358), j = 1, \dots, 6, \text{ and } E_7 = 130 - E_1 - \dots - E_6.$ The chi-square test statistic is small indicating a good fit of the model:

 $X^{2} = \sum_{j=1}^{7} \frac{(O_{j} - E_{j})^{2}}{E_{j}} = 1.86.$

3 Maximum Likelihood method

Before sampling the vector of future observations (X_1, \ldots, X_n) is random and has a joint distribution $f(x_1,\ldots,x_n|\theta).$

After sampling the observed vector (x_1, \ldots, x_n) has a likelihood $L(\theta) = f(x_1, \ldots, x_n | \theta)$, which is a function of the unknown population parameter θ . In general, the likelihood function is not a density function.

To illustrate draw three density curves for three parameter values $\theta_1 < \theta_2 < \theta_3$, then show how for a given x, the likelihood curve connects the x-values from the three curves.

The maximum likelihood estimate $\hat{\theta}$ of θ is the value of θ that maximises $L(\theta)$.

Example (binomial model)

Consider the binomial distribution model $X \sim Bin(n, p)$, with a single observation corresponding to n observations in the Ber(p) model. From $\mu = np$, we see that the method of moment estimator $\tilde{p} = \frac{x}{n}$ is the sample proportion.

Likelihood function $L(p) = \binom{n}{x} p^x q^{n-x}$. To maximise log-likelihood function

 $\log L(p) = \log \binom{n}{x} + x \log p + (n - x) \log(1 - p),$ take its derivative $\frac{d \log L(p)}{dp} = \frac{x}{p} - \frac{n - x}{1 - p}$, and solve the equation $\frac{d \log L(p)}{dp} = 0$. As a results we again obtain the sample proportion $\hat{p} = \frac{x}{n}$, which is consistent with our earlier notation.

4 Large sample properties of the maximum likelihood estimates

For an IID sample (X_1, \ldots, X_n) , the likelihood function is given by the product $L(\theta) =$ $f(x_1|\theta)\cdots f(x_n|\theta)$ due to independence. This implies that the log-likelihood function can be treated as a sum of independent and identically distributed random variables $Y_i = \log f(X_i|\theta)$. Using the central limit theorem argument one can conclude that for large n, we have a

Normal approximation $\hat{\theta} \stackrel{a}{\sim} \mathcal{N}(\theta, \frac{1}{nI(\theta)})$

Fisher information in a single observation: $I(\theta) = \mathbb{E}\left[\frac{\partial}{\partial \theta} \log f(X|\theta)\right]^2 = -\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)\right].$ Maximum likelihood estimators are

asymptotically unbiased, consistent, and asymptotically efficient (has minimal variance), Cramer-Rao inequality: if θ^* is an unbiased estimator of θ , then $\operatorname{Var}(\theta^*) \geq \frac{1}{nI(\theta)}$.

Approximate $100(1-\alpha)\%$ CI for $\theta: \hat{\theta} \pm \frac{z_{\alpha/2}}{\sqrt{nI(\hat{\theta})}}$

Example (exponential model)

Lifetimes of five batteries measured in hours

 $x_1 = 0.5, x_2 = 14.6, x_3 = 5.0, x_4 = 7.2, x_5 = 1.2.$

Consider an exponential model $X \sim \text{Exp}(\lambda)$, where λ is the death rate per hour. Method of moment estimate:

from $\mu = 1/\lambda$, we find $\tilde{\lambda} = 1/\bar{X} = \frac{5}{28.5} = 0.175$. The likelihood function grows from 0 to $2.2 \cdot 10^{-7}$ and then falls down $L(\lambda) = \lambda e^{-\lambda x_1} \lambda e^{-\lambda x_2} \lambda e^{-\lambda x_3} \lambda e^{-\lambda x_4} \lambda e^{-\lambda x_5} = \lambda^n e^{-\lambda(x_1 + \ldots + x_n)} = \lambda^5 e^{-\lambda \cdot 28.5}$

the likelihood maximum is reached at $\hat{\lambda} = 0.175$.

For the exponential model the maximum likelihood estimator $\hat{\lambda} = 1/\bar{X}$

is biased but asymptotically unbiased:

 $E(\hat{\lambda}) \approx \lambda$ for large samples, since $\bar{X} \approx \mu$ due to the Law of Large Numbers. Fisher information for the exponential model is easy to compute:

 $\frac{\partial^2}{\partial \lambda^2} \log f(X|\lambda) = -1/\lambda^2, \qquad I(\lambda) = -\mathbb{E}[\frac{\partial^2}{\partial \lambda^2} \log f(X|\lambda)] = \frac{1}{\lambda^2}.$ Thus, $\operatorname{Var}(\hat{\lambda}) \approx \frac{\lambda^2}{n}$ and we get an approximate 95% CI for λ : $0.175 \pm 1.96 \frac{0.175}{\sqrt{5}} = 0.175 \pm 0.153.$

5 Gamma model example

Male height sample of size n = 24 in an ascending order:

170, 175, 176, 176, 177, 178, 178, 179, 179, 180, 180, 180, 180, 180, 181, 181, 182, 183, 184, 186, 187, 192, 192, 199.Summary statistics: $\bar{x} = 181.46, \ \overline{x^2} = 32964.2, \ \overline{x^2} - \bar{x}^2 = 37.08.$

Gamma distribution model $X \sim \text{Gamma}(\alpha, \lambda)$ is more flexible than the normal distribution model. First, we may apply the method of moments:

 $E(X) = \frac{\tilde{\alpha}}{\lambda}$ and $E(X^2) = \frac{\alpha(\alpha+1)}{\lambda^2}$ imply $\tilde{\alpha} = \bar{x}^2/(\bar{x}^2 - \bar{x}^2) = 887.96, \ \tilde{\lambda} = \tilde{\alpha}/\bar{x} = 4.89.$ Likelihood function

$$L(\alpha,\lambda) = \prod_{i=1}^{n} \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x_i^{\alpha-1} e^{-\lambda x_i} = \frac{\lambda^{n\alpha}}{\Gamma^n(\alpha)} (x_1 \cdots x_n)^{\alpha-1} e^{-\lambda(x_1 + \dots + x_n)},$$

notice that $t_1 = x_1 + \ldots + x_n$ and $t_2 = x_1 \cdots x_n$ are a pair of sufficient statistics containing all information from the data needed to compute the likelihood function.

Maximisation of the log-likelihood function: set two derivatives equal to zero

 $\frac{\partial}{\partial \alpha} \log L(\alpha, \lambda) = n \log(\lambda) - n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} + \log t_2,$ $\frac{\partial}{\partial \lambda} \log L(\alpha, \lambda) = \frac{n\alpha}{\lambda} - t_1.$ Solve numerically two equations

 $\log(\hat{\alpha}/\bar{x}) = -\frac{1}{n}\log t_2 + \Gamma'(\hat{\alpha})/\Gamma(\hat{\alpha}) \quad \text{and} \quad \hat{\lambda} = \hat{\alpha}/\bar{x},$

using the method of moment estimates $\tilde{\alpha} = 887.96$, $\tilde{\lambda} = 4.89$ as the initial values. Mathematica command

 $FindRoot[Log[a] == 0.00055 + Gamma'[a]/Gamma[a], \{a, 887.96\}]$

gives the maximum likelihood estimates $\hat{\alpha} = 908.76, \hat{\lambda} = 5.01.$

Parametric bootstrap 6

What is the standard error $s_{\hat{\alpha}}$ of the maximum likelihood estimate $\hat{\alpha} = 908.76$? No analytical formula is available. If we could simulate from the true population distribution $\operatorname{Gamma}(\alpha, \lambda)$, then B samples of size n = 24 would generate B independent estimates $\hat{\alpha}_i$. The standard deviation of the sampling distribution is the desired standard error:

$$\bar{\alpha} = \frac{1}{B} \sum_{j=1}^{B} \hat{\alpha}_j, \qquad s_{\hat{\alpha}}^2 = \frac{1}{B-1} \sum_{j=1}^{B} (\hat{\alpha}_j - \bar{\alpha})^2.$$

Parametric bootstrap approach: use $\text{Gamma}(\hat{\alpha}, \hat{\lambda})$ as a substitute of $\text{Gamma}(\alpha, \lambda)$.

Bootstrap algorithm for finding an approximate 95% CI for α :

 $\hat{\alpha}$ as a substitute for $\alpha \to \hat{\alpha}_1, \ldots, \hat{\alpha}_B \to \text{sampling distribution of } \hat{\alpha} \to 95\%$ brackets c_1, c_2 .

Compute a confidence interval as $(2\hat{\alpha} - c_2, 2\hat{\alpha} - c_1)$. Explanation of the CI formula:

 $0.95 \approx P(c_1 < \hat{\alpha} < c_2) = P(c_1 - \hat{\alpha} < \hat{\alpha} - \hat{\alpha} < c_2 - \hat{\alpha})$ $\approx P(c_1 - \hat{\alpha} < \hat{\alpha} - \alpha < c_2 - \hat{\alpha}) = P(2\hat{\alpha} - c_2 < \alpha < 2\hat{\alpha} - c_1).$

Example (male heights)

I simulated B = 1000 samples of size n = 24 from Gamma(908.76; 5.01) and found $\bar{\alpha} = 1039.0$, $s_{\hat{\alpha}} = \sqrt{\frac{1}{999}\sum(\hat{\alpha}_j - \bar{\alpha})^2} = 331.29$. The standard error is large because of small sample size n = 24.

Matlab commands for the male heights example:

gamrnd(908.76*ones(1000,24), 5.01*ones(1000,24)),prctile(x, 2.5), prctile(x, 97.5).

7 Exact confidence intervals

A restrictive assumption on the population distribution: an IID sample (X_1, \ldots, X_n) is taken from the normal distribution $N(\mu, \sigma^2)$ with unspecified parameters μ and σ .

Exact distribution $\frac{\bar{X}-\mu}{s_{\bar{X}}} \sim t_{n-1}$ gives an exact $100(1-\alpha)\%$ CI for $\mu: \bar{X} \pm t_{n-1}(\alpha/2) \cdot s_{\bar{X}}$

A t_k -distribution curve looks similar to N(0,1)-curve. Its density function is symmetric around zero: $f(x) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{k\pi}\Gamma(\frac{k}{2})} \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}}, \quad k \ge 1.$

It has larger spread. If the number of degrees of freedom $k \ge 3$, then the variance is $\frac{k}{k-2}$. Connection to the standard normal distribution:

if Z, Z_1, \ldots, Z_k are N(0,1) and independent, then $\frac{Z}{\sqrt{(Z_1^2 + \ldots + Z_k^2)/n}} \sim t_k$.

Let $\alpha = 0.05$. The exact CI for μ is wider than the approximate confidence interval $\bar{X} \pm 1.96 \cdot s_{\bar{X}}$ valid for the very large n. For example

 $\bar{X} \pm 2.26 \cdot s_{\bar{X}} \text{ for } n = 10 \qquad \qquad \bar{X} \pm 2.13 \cdot s_{\bar{X}} \text{ for } n = 16 \\ \bar{X} \pm 2.06 \cdot s_{\bar{X}} \text{ for } n = 25 \qquad \qquad \bar{X} \pm 2.00 \cdot s_{\bar{X}} \text{ for } n = 60$

Exact distribution $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$ gives an exact $100(1-\alpha)\%$ CI for $\sigma^2:\left(\frac{(n-1)s^2}{\chi^2_{n-1}(\alpha/2)};\frac{(n-1)s^2}{\chi^2_{n-1}(1-\alpha/2)}\right)$

The chi-square distribution with k degrees of freedom is the gamma distribution with $\alpha = \frac{k}{2}, \lambda = \frac{1}{2}$. Connection to the standard normal distribution:

if Z_1, \ldots, Z_k are N(0,1) and independent, then $Z_1^2 + \ldots + Z_k^2 \sim \chi_k^2$. The exact confidence interval for σ^2 is non-symmetric. Examples of 95% confidence intervals for σ^2 :

$(0.47s^2, 3.33s^2)$ for $n = 10$	$(0.55s^2, 2.40s^2)$ for $n = 16$	$(0.61s^2, 1.94s^2)$ for $n = 25$
$(0.72s^2, 1.49s^2)$ for $n = 60$	$(0.94s^2, 1.07s^2)$ for $n = 2000$	$(0.98s^2, 1.02s^2)$ for $n = 20000$

Under the normality assumption $\operatorname{Var}(s^2) = \frac{2\sigma^4}{n-1}$, estimated standard error for s^2 is $\sqrt{\frac{2}{n-1}}s^2$.

8 Sufficiency

Definition: $T = T(X_1, \ldots, X_n)$ is a sufficient statistic for θ , if no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter θ .

If T is sufficient for θ , then the maximum likelihood estimator is a function of T.

Factorisation criterium: T is a sufficient statistic for θ , if and only if $f(x_1, \ldots, x_n | \theta) = g(t, \theta) h(x_1, \ldots, x_n)$, where $t = T(x_1, \ldots, x_n)$.

Examples

Bernoulli distribution. Since for a single observation, $P(X = x) = \theta^x (1 - \theta)^{1-x}$, it follows that $f(x_1, \ldots, x_n | \theta) = \prod_{i=1}^n \theta^{x_i} (1 - \theta)^{1-x_i} = \theta^{n\bar{x}} (1 - \theta)^{n-n\bar{x}}$,

thus the number of successes $T = n\bar{X}$ is a sufficient statistic.

Bernoulli model Ber(p) with n observations = binomial model Bin(n, p) with a single observation.

Normal distribution $N(\mu, \sigma^2)$ has a two-dimensional sufficient statistic $(t_1, t_2) = (\sum_{i=1}^n x_i, \sum_{i=1}^n x_i^2)$

$$\prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} = \frac{1}{\sigma^n (2\pi)^{n/2}} e^{-\frac{t_2-2\mu t_1+n\mu^2}{2\sigma^2}}.$$

Also recall the gamma distribution model discussed earlier.