Chapter 8. Estimation of parameters

Main issue: given a parametric model with unknown parameters θ estimate θ from an IID random sample $\left(X_{1}, \ldots, X_{n}\right)$. Two basic methods of finding good estimates

1. method of moments - simple, can be used as a first approximation for the other method,
2. maximum likelihood method - optimal for large samples.

1 List of parametric models

Bernoulli distribution $\operatorname{Ber}(p)$:
$X=1$ with probability p, and $X=0$ with probability $q=1-p, \quad \mu=p, \sigma^{2}=p q$.
Binomial distribution $\operatorname{Bin}(n, p)$:
$X=$ number of successes in n Bernoulli trials, $p=$ probability of success, $q=1-p$,
$\mathrm{P}(X=k)=\binom{n}{k} p^{k} q^{n-k}, 0 \leq k \leq n, \quad \mu=n p, \sigma^{2}=n p q$.
Hypergeometric distribution $\operatorname{Hg}(N, n, p)$: sampling n elements out of N without replacement,
$\mathrm{P}(X=k)=\frac{\binom{N p}{k}\binom{N q}{n-k}}{\binom{N}{n}}, 0 \leq k \leq \min (n, N p), \quad \mu=n p, \sigma^{2}=n p q\left(1-\frac{n-1}{N-1}\right)$.
Geometric distribution $\operatorname{Geom}(p)$:
$X=$ number of Bernoulli trials until the first success,
$\mathrm{P}(X=k)=p q^{k-1}, k \geq 1, \quad \mu=\frac{1}{p}, \sigma^{2}=\frac{q}{p^{2}}$.
Poisson distribution $\operatorname{Pois}(\lambda)$, an approximation for $\operatorname{Bin}(n, \lambda / n)$ with large n :
$X=$ number of rare events,
$\mathrm{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, k \geq 0, \quad \mu=\sigma^{2}=\lambda$.
Exponential distribution $\operatorname{Exp}(\lambda)$, a continuous version of geometric distribution:
$X=$ life length without aging,
density function $f(x)=\lambda e^{-\lambda x}, x>0, \quad \mu=\frac{1}{\lambda}, \sigma^{2}=\frac{1}{\lambda^{2}}$.
Normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$,
Central Limit Theorem predicts for the sums of many small almost independent contributions, density function $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, \quad-\infty<x<\infty$.
Gamma distribution $\operatorname{Gamma}(\alpha, \lambda)$: shape parameter $\alpha>0$ and scale parameter $\lambda>0$,
density function $f(x)=\frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}, x>0, \quad \mu=\frac{\alpha}{\lambda}, \sigma^{2}=\frac{\alpha}{\lambda^{2}}$,
$\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x, \quad$ in particular for $k=1,2, \ldots$, we have $\Gamma(k)=(k-1)!$

2 Method of moments

Suppose we are given IID sample $\left(X_{1}, \ldots, X_{n}\right)$ from a parametric population distribution $\mathrm{D}\left(\theta_{1}, \theta_{2}\right)$ with population moments

$$
\mathrm{E}(X)=f\left(\theta_{1}, \theta_{2}\right) \text { and } \mathrm{E}\left(X^{2}\right)=g\left(\theta_{1}, \theta_{2}\right) .
$$

Method of moments estimators $\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}\right)$ are found after replacing the population moment with sample moments, and then solving the equations $\bar{X}=f\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}\right)$ and $\overline{X^{2}}=g\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}\right)$.

Example (geometric model)
Data $X_{i}=$ number of hops that a bird does between flights, $n=130$:

Number of hops	1	2	3	4	5	6	7	8	9	10	11	12	Tot
Number of birds (Observed frequency)	48	31	20	9	6	5	4	2	1	1	2	1	130

Summary statistics

$$
\begin{aligned}
& \bar{X}=\frac{\text { total number of hops }}{\text { number of birds }}=\frac{363}{130}=2.79, \\
& \overline{X^{2}}=1^{2} \cdot \frac{48}{130}+2^{2} \cdot \frac{31}{130}+\ldots+11^{2} \cdot \frac{2}{130}+12^{2} \cdot \frac{1}{130}=13.20, \\
& s^{2}=\frac{130}{129}\left(X^{2}-\bar{X}^{2}\right)=5.47, \\
& s_{\bar{X}}=\sqrt{\frac{5.47}{130}}=0.205 .
\end{aligned}
$$

An approximate $95 \% \mathrm{CI}$ for μ, the mean number of hops per bird:

$$
\bar{X} \pm z_{0.025} \cdot s_{\bar{X}}=2.79 \pm 1.96 \cdot 0.205=2.79 \pm 0.40
$$

Geometric model $X \sim \operatorname{Geom}(p)$ assumes that a bird does not "remember" the number of jumps made so far. Method of moment estimate for p :
from $\mu=1 / p$ we build an equation $\bar{X}=1 / \tilde{p}$ and find $\tilde{p}=1 / \bar{X}=0.358$.
We can compute an approximate 95% CI for p using the above CI for μ :

$$
\left(\frac{1}{2.79+0.40}, \frac{1}{2.79-0.40}\right)=(0.31,0.42) .
$$

Model fit question: does the geometric distribution fit the data? To answer, compare the observed frequencies to expected frequencies:

j	1	2	3	4	5	6	$7+$
O_{j}	48	31	20	9	6	5	11
E_{j}	46.5	29.9	19.2	12.3	7.9	5.1	9.1

Expected frequencies are computed using geometric distribution with the estimated parameter value: $E_{j}=\mathrm{E}\left(O_{j} \mid\right.$ model $)=n \tilde{q}^{j-1} \tilde{p}=130 \cdot(0.642)^{j-1}(0.358), j=1, \ldots, 6$, and $E_{7}=130-E_{1}-\ldots-E_{6}$. The chi-square test statistic is small indicating a good fit of the model:

$$
X^{2}=\sum_{j=1}^{7} \frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}}=1.86 .
$$

3 Maximum Likelihood method

Before sampling the vector of future observations $\left(X_{1}, \ldots, X_{n}\right)$ is random and has a joint distribution $f\left(x_{1}, \ldots x_{n} \mid \theta\right)$.
After sampling the observed vector $\left(x_{1}, \ldots, x_{n}\right)$ has a likelihood $L(\theta)=f\left(x_{1}, \ldots x_{n} \mid \theta\right)$, which is a function of the unknown population parameter θ. In general, the likelihood function is not a density function.
To illustrate draw three density curves for three parameter values $\theta_{1}<\theta_{2}<\theta_{3}$, then show how for a given x, the likelihood curve connects the x-values from the three curves.

The maximum likelihood estimate $\hat{\theta}$ of θ is the value of θ that maximises $L(\theta)$.
Example (binomial model)
Consider the binomial distribution model $X \sim \operatorname{Bin}(n, p)$, with a single observation corresponding to n observations in the $\operatorname{Ber}(p)$ model. From $\mu=n p$, we see that the method of moment estimator $\tilde{p}=\frac{x}{n}$ is the sample proportion.
Likelihood function $L(p)=\binom{n}{x} p^{x} q^{n-x}$. To maximise log-likelihood function

$$
\log L(p)=\log \binom{n}{x}+x \log p+(n-x) \log (1-p),
$$

take its derivative $\frac{d \log L(p)}{d p}=\frac{x}{p}-\frac{n-x}{1-p}$, and solve the equation $\frac{d \log L(p)}{d p}=0$. As a results we again obtain the sample proportion $\hat{p}=\frac{x}{n}$, which is consistent with our earlier notation.

4 Large sample properties of the maximum likelihood estimates

For an IID sample $\left(X_{1}, \ldots, X_{n}\right)$, the likelihood function is given by the product $L(\theta)=$ $f\left(x_{1} \mid \theta\right) \cdots f\left(x_{n} \mid \theta\right)$ due to independence. This implies that the log-likelihood function can be treated as a sum of independent and identically distributed random variables $Y_{i}=\log f\left(X_{i} \mid \theta\right)$. Using the central limit theorem argument one can conclude that for large n, we have a

Normal approximation $\hat{\theta} \stackrel{a}{\sim} \mathrm{~N}\left(\theta, \frac{1}{n I(\theta)}\right)$
Fisher information in a single observation: $I(\theta)=\mathrm{E}\left[\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right]^{2}=-\mathrm{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \log f(X \mid \theta)\right]$.
Maximum likelihood estimators are
asymptotically unbiased, consistent, and asymptotically efficient (has minimal variance),
Cramer-Rao inequality: if θ^{*} is an unbiased estimator of θ, then $\operatorname{Var}\left(\theta^{*}\right) \geq \frac{1}{n I(\theta)}$.
Approximate $100(1-\alpha) \%$ CI for $\theta: \hat{\theta} \pm \frac{z_{\alpha / 2}}{\sqrt{n I(\hat{\theta})}}$
Example (exponential model)
Lifetimes of five batteries measured in hours

$$
x_{1}=0.5, x_{2}=14.6, x_{3}=5.0, x_{4}=7.2, x_{5}=1.2 .
$$

Consider an exponential model $X \sim \operatorname{Exp}(\lambda)$, where λ is the death rate per hour.
Method of moment estimate:
from $\mu=1 / \lambda$, we find $\tilde{\lambda}=1 / \bar{X}=\frac{5}{28.5}=0.175$.
The likelihood function grows from 0 to $2.2 \cdot 10^{-7}$ and then falls down
$L(\lambda)=\lambda e^{-\lambda x_{1}} \lambda e^{-\lambda x_{2}} \lambda e^{-\lambda x_{3}} \lambda e^{-\lambda x_{4}} \lambda e^{-\lambda x_{5}}=\lambda^{n} e^{-\lambda\left(x_{1}+\ldots+x_{n}\right)}=\lambda^{5} e^{-\lambda \cdot 28.5}$
the likelihood maximum is reached at $\hat{\lambda}=0.175$.
For the exponential model the maximum likelihood estimator $\hat{\lambda}=1 / \bar{X}$
is biased but asymptotically unbiased:
$\mathrm{E}(\hat{\lambda}) \approx \lambda$ for large samples, since $\bar{X} \approx \mu$ due to the Law of Large Numbers.
Fisher information for the exponential model is easy to compute:
$\frac{\partial^{2}}{\partial \lambda^{2}} \log f(X \mid \lambda)=-1 / \lambda^{2}, \quad I(\lambda)=-\mathrm{E}\left[\frac{\partial^{2}}{\partial \lambda^{2}} \log f(X \mid \lambda)\right]=\frac{1}{\lambda^{2}}$.
Thus, $\operatorname{Var}(\hat{\lambda}) \approx \frac{\lambda^{2}}{n}$ and we get an approximate 95% CI for $\lambda: 0.175 \pm 1.96 \frac{0.175}{\sqrt{5}}=0.175 \pm 0.153$.

5 Gamma model example

Male height sample of size $n=24$ in an ascending order:
$170,175,176,176,177,178,178,179,179,180,180,180,180,180,181,181,182,183,184,186,187,192,192,199$. Summary statistics: $\bar{x}=181.46, \overline{x^{2}}=32964.2, \overline{x^{2}}-\bar{x}^{2}=37.08$.
Gamma distribution model $X \sim \operatorname{Gamma}(\alpha, \lambda)$ is more flexible than the normal distribution model. First, we may apply the method of moments:

$$
\mathrm{E}(X)=\frac{\alpha}{\lambda} \text { and } \mathrm{E}\left(X^{2}\right)=\frac{\alpha(\alpha+1)}{\lambda^{2}} \text { imply } \tilde{\alpha}=\bar{x}^{2} /\left(\overline{x^{2}}-\bar{x}^{2}\right)=887.96, \tilde{\lambda}=\tilde{\alpha} / \bar{x}=4.89
$$

Likelihood function

$$
L(\alpha, \lambda)=\prod_{i=1}^{n} \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x_{i}^{\alpha-1} e^{-\lambda x_{i}}=\frac{\lambda^{n \alpha}}{\Gamma^{n}(\alpha)}\left(x_{1} \cdots x_{n}\right)^{\alpha-1} e^{-\lambda\left(x_{1}+\ldots+x_{n}\right)}
$$

notice that $t_{1}=x_{1}+\ldots+x_{n}$ and $t_{2}=x_{1} \cdots x_{n}$ are a pair of sufficient statistics containing all information from the data needed to compute the likelihood function.

Maximisation of the log-likelihood function: set two derivatives equal to zero
$\frac{\partial}{\partial \alpha} \log L(\alpha, \lambda)=n \log (\lambda)-n \frac{\Gamma^{\prime}(\alpha)}{\Gamma(\alpha)}+\log t_{2}$,
$\frac{\partial}{\partial \lambda} \log L(\alpha, \lambda)=\frac{n \alpha}{\lambda}-t_{1}$.
Solve numerically two equations
$\log (\hat{\alpha} / \bar{x})=-\frac{1}{n} \log t_{2}+\Gamma^{\prime}(\hat{\alpha}) / \Gamma(\hat{\alpha}) \quad$ and $\quad \hat{\lambda}=\hat{\alpha} / \bar{x}$,
using the method of moment estimates $\tilde{\alpha}=887.96, \tilde{\lambda}=4.89$ as the initial values.
Mathematica command

$$
\text { FindRoot }\left[\log [\mathrm{a}]==0.00055+\mathrm{Gamma}^{\prime}[a] / \text { Gamma }[\mathrm{a}],\{\mathrm{a}, 887.96\}\right]
$$

gives the maximum likelihood estimates $\hat{\alpha}=908.76, \hat{\lambda}=5.01$.

6 Parametric bootstrap

What is the standard error $s_{\hat{\alpha}}$ of the maximum likelihood estimate $\hat{\alpha}=908.76$? No analytical formula is available. If we could simulate from the true population distribution $\operatorname{Gamma}(\alpha, \lambda)$, then B samples of size $n=24$ would generate B independent estimates $\hat{\alpha}_{j}$. The standard deviation of the sampling distribution is the desired standard error:

$$
\bar{\alpha}=\frac{1}{B} \sum_{j=1}^{B} \hat{\alpha}_{j}, \quad s_{\hat{\alpha}}^{2}=\frac{1}{B-1} \sum_{j=1}^{B}\left(\hat{\alpha}_{j}-\bar{\alpha}\right)^{2} .
$$

$$
\text { Parametric bootstrap approach: use } \operatorname{Gamma}(\hat{\alpha}, \hat{\lambda}) \text { as a substitute of } \operatorname{Gamma}(\alpha, \lambda) \text {. }
$$

Bootstrap algorithm for finding an approximate 95% CI for α :
$\hat{\alpha}$ as a substitute for $\alpha \rightarrow \hat{\alpha}_{1}, \ldots, \hat{\alpha}_{B} \rightarrow$ sampling distribution of $\hat{\hat{\alpha}} \rightarrow 95 \%$ brackets c_{1}, c_{2}.
Compute a confidence interval as $\left(2 \hat{\alpha}-c_{2}, 2 \hat{\alpha}-c_{1}\right)$. Explanation of the CI formula:

$$
\begin{aligned}
0.95 & \approx \mathrm{P}\left(c_{1}<\hat{\hat{\alpha}}<c_{2}\right)=\mathrm{P}\left(c_{1}-\hat{\alpha}<\hat{\hat{\alpha}}-\hat{\alpha}<c_{2}-\hat{\alpha}\right) \\
& \approx \mathrm{P}\left(c_{1}-\hat{\alpha}<\hat{\alpha}-\alpha<c_{2}-\hat{\alpha}\right)=\mathrm{P}\left(2 \hat{\alpha}-c_{2}<\alpha<2 \hat{\alpha}-c_{1}\right) .
\end{aligned}
$$

Example (male heights)
I simulated $B=1000$ samples of size $n=24$ from $\operatorname{Gamma}(908.76 ; 5.01)$ and found $\bar{\alpha}=1039.0$, $s_{\hat{\alpha}}=\sqrt{\frac{1}{999} \sum\left(\hat{\alpha}_{j}-\bar{\alpha}\right)^{2}}=331.29$. The standard error is large because of small sample size $n=24$.

Matlab commands for the male heights example:
gamrnd (908.76*ones(1000,24), 5.01*ones $(1000,24)$),
$\operatorname{prctile}(x, 2.5), \operatorname{prctile}(x, 97.5)$.

$7 \quad$ Exact confidence intervals

A restrictive assumption on the population distribution: an IID sample $\left(X_{1}, \ldots, X_{n}\right)$ is taken from the normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$ with unspecified parameters μ and σ.

$$
\text { Exact distribution } \frac{\bar{X}-\mu}{s_{\bar{X}}} \sim t_{n-1} \text { gives an exact } 100(1-\alpha) \% \text { CI for } \mu: \bar{X} \pm t_{n-1}(\alpha / 2) \cdot s_{\bar{X}}
$$

A t_{k}-distribution curve looks similar to $\mathrm{N}(0,1)$-curve. Its density function is symmetric around zero:

$$
f(x)=\frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k \pi \Gamma\left(\frac{k}{2}\right)}}\left(1+\frac{x^{2}}{k}\right)^{-\frac{k+1}{2}}, \quad k \geq 1 .
$$

It has larger spread. If the number of degrees of freedom $k \geq 3$, then the variance is $\frac{k}{k-2}$.
Connection to the standard normal distribution:
if Z, Z_{1}, \ldots, Z_{k} are $\mathrm{N}(0,1)$ and independent, then $\frac{Z}{\sqrt{\left(Z_{1}^{2}+\ldots+Z_{k}^{2}\right) / n}} \sim t_{k}$.
Let $\alpha=0.05$. The exact CI for μ is wider than the approximate confidence interval $\bar{X} \pm 1.96 \cdot s_{\bar{X}}$ valid for the very large n. For example

$$
\begin{array}{ll}
\bar{X} \pm 2.26 \cdot s_{\bar{X}} \text { for } n=10 & \bar{X} \pm 2.13 \cdot s_{\bar{X}} \text { for } n=16 \\
\bar{X} \pm 2.06 \cdot s_{\bar{X}} \text { for } n=25 & \bar{X} \pm 2.00 \cdot s_{\bar{X}} \text { for } n=60
\end{array}
$$

Exact distribution $\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$ gives an exact $100(1-\alpha) \%$ CI for $\sigma^{2}:\left(\frac{(n-1) s^{2}}{\chi_{n-1}^{2}(\alpha / 2)} ; \frac{(n-1) s^{2}}{\chi_{n-1}^{2}(1-\alpha / 2)}\right)$
The chi-square distribution with k degrees of freedom is the gamma distribution with $\alpha=\frac{k}{2}, \lambda=\frac{1}{2}$. Connection to the standard normal distribution:
if Z_{1}, \ldots, Z_{k} are $\mathrm{N}(0,1)$ and independent, then $Z_{1}^{2}+\ldots+Z_{k}^{2} \sim \chi_{k}^{2}$.
The exact confidence interval for σ^{2} is non-symmetric. Examples of 95% confidence intervals for σ^{2} :
$\left(0.47 s^{2}, 3.33 s^{2}\right)$ for $n=10$
$\left(0.55 s^{2}, 2.40 s^{2}\right)$ for $n=16$
$\left(0.61 s^{2}, 1.94 s^{2}\right)$ for $n=25$
$\left(0.72 s^{2}, 1.49 s^{2}\right)$ for $n=60$
$\left(0.94 s^{2}, 1.07 s^{2}\right)$ for $n=2000$
$\left(0.98 s^{2}, 1.02 s^{2}\right)$ for $n=20000$

Under the normality assumption $\operatorname{Var}\left(s^{2}\right)=\frac{2 \sigma^{4}}{n-1}$, estimated standard error for s^{2} is $\sqrt{\frac{2}{n-1}} s^{2}$.

8 Sufficiency

Definition: $T=T\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for θ, if no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter θ.

If T is sufficient for θ, then the maximum likelihood estimator is a function of T.
Factorisation criterium: T is a sufficient statistic for θ, if and only if $f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=g(t, \theta) h\left(x_{1}, \ldots, x_{n}\right)$, where $t=T\left(x_{1}, \ldots, x_{n}\right)$.

Examples

Bernoulli distribution. Since for a single observation, $\mathrm{P}(X=x)=\theta^{x}(1-\theta)^{1-x}$, it follows that $f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}}=\theta^{n \bar{x}}(1-\theta)^{n-n \bar{x}}$,
thus the number of successes $T=n \bar{X}$ is a sufficient statistic.
Bernoulli model $\operatorname{Ber}(p)$ with n observations = binomial model $\operatorname{Bin}(n, p)$ with a single observation.
Normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$ has a two-dimensional sufficient statistic $\left(t_{1}, t_{2}\right)=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)$

$$
\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sigma^{n}(2 \pi)^{n / 2}} e^{-\frac{t_{2}-2 \mu t_{1}+n \mu^{2}}{2 \sigma^{2}}}
$$

Also recall the gamma distribution model discussed earlier.

