SERIK SAGITOV, Chalmers and GU, January 31, 2016

Chapter 8. Estimation of parameters

Main issue: given a parametric model with unknown parameters 6 estimate 6 from an IID random
sample (X71,..., X,,). Two basic methods of finding good estimates

1. method of moments - simple, can be used as a first approximation for the other method,

2. maximum likelihood method - optimal for large samples.

1 List of parametric models

Bernoulli distribution Ber(p):

X =1 with probability p, and X = 0 with probability ¢ =1 — p, w=p, o?=pq.
Binomial distribution Bin(n, p):

X = number of successes in n Bernoulli trials, p = probability of success, ¢ =1 — p,

P(X =k) = (Z)pkq"_k, 0<k<n, [ =np, o2 = npq.
Hypergeometric distribution Hg(N, n, p): sampling n elements out of N without replacement,

Np Ngq
Px =) = B o<k < min(n, Np). i = np, o = mpa(1 — 1),

-1
Geometric distribution Geom(p):
X = number of Bernoulli trials until the first success,
P(X =k)=p¢*t k>1, uz%,aQZI%.
Poisson distribution Pois(A), an approximation for Bin(n, A\/n) with large n:
X = number of rare events,
P(X =k) =2 k>0, p=0o2=M\
Exponential distribution Exp(\), a continuous version of geometric distribution:
X = life length without aging,
density function f(x) = e ** x> 0, =
Normal distribution N(u, 0?),
Central Limit Theorem predicts for the sums of many small almost independent contributions,
density function f(z) = \/Lme (5547, —00 < & < 00.
Gamma distribution Gamma(a, \): shape parameter a > 0 and scale parameter A\ > 0,
density function f(z) = ﬁ)\ama_le”‘m, x>0, p==5, 0=,
() = [g°z* tedz, in particular for £ =1,2,..., we have I'(k) = (k — 1)!

1 _
X’O- = 315.

2 Method of moments

Suppose we are given IID sample (Xi,...,X,) from a parametric population distribution D(6;,62)
with population moments

E(X) = £(61,0,) and E(X?) = ¢(61,65).

Method of moments estimators (6’1, 02) are found after replacing the population moment with sample
moments, and then solving the equations X = f(6;,60,) and X2 = g(6y,65).

Example (geometric model)
Data X; = number of hops that a bird does between flights, n = 130:
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Number of hops ‘ 1 ‘ 2 7
Number of birds (Observed frequency) | 48 [ 3120 |9 |6 |5 | 4]

Summary statistics
X = total number of hops __ 363 — 279’

élumligr of biQrds a1 T 130 5 o -
2 —
§? = 1B(X2 _ X?) =547,

sx =/ 55 = 0.205.
An approximate 95% CI for p, the mean number of hops per bird:
X+ 2009555 = 2.79 & 1.96 - 0.205 = 2.79 = 0.40.

Geometric model X ~ Geom(p) assumes that a bird does not “remember” the number of jumps made
so far. Method of moment estimate for p:
from ;= 1/p we build an equation X = 1/p and find p = 1/X = 0.358.
We can compute an approximate 95% CI for p using the above CI for u:
(2.79i0.407 o) = (0-31,042).
Model fit question: does the geometric distribution fit the data? To answer, compare the observed

frequencies to expected frequencies:

il 1] 2] 3] 41567+
O;| 48 [ 31 [ 20| 9 | 6 | 5 |11
E;, [465]2090 1921237951 9.1

Expected frequencies are computed using geometric distribution with the estimated parameter value:
E; = E(Oj|model) = ng’~'p = 130 - (0.642)71(0.358),j = 1,...,6, and By = 130 — F; — ... — Fj.
The chi-square test statistic is small indicating a good fit of the model:

X7 = ¥, O — 186

3 Maximum Likelihood method

Before sampling the vector of future observations (Xi, ..., X,,) is random and has a joint distribution
f(xy,...x,|0).

After sampling the observed vector (zy,...,z,) has a likelihood L(#) = f(x1,...x,|0), which is a
function of the unknown population parameter 6. In general, the likelihood function is not a density
function.

To illustrate draw three density curves for three parameter values 6; < 65 < 63, then show how for a
given x, the likelihood curve connects the z-values from the three curves.

The maximum likelihood estimate 6 of 6 is the value of @ that maximises L(6).

Example (binomial model)

Consider the binomial distribution model X ~ Bin(n, p), with a single observation corresponding to
n observations in the Ber(p) model. From p = np, we see that the method of moment estimator p = *
is the sample proportion.

Likelihood function L(p) = (Z) p*q"~*. To maximise log-likelihood function

log L(p) = log (Z) +xlogp + (n — x)log(l — p),

take its derivative ‘ﬂ%‘f(”) = % — 711—:;7 and solve the equation ‘ﬂ%‘f(”) = 0. As a results we again obtain

the sample proportion p = %, which is consistent with our earlier notation.
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4 Large sample properties of the maximum likelihood estimates

For an IID sample (Xi,...,X,), the likelihood function is given by the product L(f) =
f(x1]0) - - - f(x,]0) due to independence. This implies that the log-likelihood function can be treated
as a sum of independent and identically distributed random variables Y; = log f(X;|#). Using the
central limit theorem argument one can conclude that for large n, we have a

Normal approximation § < N(6, Ml(e))

Fisher information in a single observation: I(#) = E[-Z log f(X|0)]* = E[802 log f(X|0)].
Maximum likelihood estimators are
asymptotically unbiased, consistent, and asymptotically efficient (has minimal variance),

Cramer-Rao inequality: if 8* is an unbiased estimator of ¢, then Var(6*) > #W)'

Approximate 100(1 — )% CI for 6: 6 + Za;?é)

Example (exponential model)
Lifetimes of five batteries measured in hours
T = 0.5,[E2 = 146, T3 = 50, Ty = 7.2,[E5 =1.2.
Consider an exponential model X ~ Exp()\), where X is the death rate per hour.
Method of moment estimate:
from g =1/X, we find A = 1/X = 5= = 0.175.
The likelihood function grows from 0 to 2.2 - 1077 and then falls down
L(/\) — /\ef)\a:l /\67)\12)\67)\903/\67)\:1:4A67)\x5 — /\nef)\(mlJr...ern) — )\567)\-28.5
the likelihood maximum is reached at A = 0.175.
For the exponential model the maximum likelihood estimator A = 1 /X
is biased but asymptotically unbiased:
E(\) &~ \ for large samples, since X & p due to the Law of Large Numbers.
Fisher information for the exponential model is easy to compute
8>\2 log f(X|)‘) = _1/)‘27 I(\) = E[a)\2 log f(X[N)] =

Thus, Var(\) ~ ; and we get an approximate 95% CI for A: 0.175 +1.96%% = (0.175 4+ 0.153.

NG

5 Gamma model example

Male height sample of size n = 24 in an ascending order:
170,175,176,176,177,178,178,179,179,180,180,180,180,180,181,181,182,183,184,186,187,192,192,199.
Summary statistics: Z = 181.46, 22 = 32964.2, x2 — 7% = 37.08.
Gamma distribution model X ~ Gamma(a, /\) is more flexible than the normal distribution model.
First, we may apply the method of moments:
E(X) = ¢ and E(X?) = 2% imply @ = 72/(22 — 7%) = 887.96, A = 4/7 = 4.89.
Likelihood function

L Ana a—1 f)\(x1+...+xn)

L(a, \) = L [ a) i e :W(x1~-xn) e ,

||::]z

notice that ¢ty = x1 + ... + x, and t, = x,---x, are a pair of sufficient statistics containing all
information from the data needed to compute the likelihood function.
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Maximisation of the log—likelihoogl function: set two derivatives equal to zero

2 Jog L(ar, A) = nlog(A) — nFF((j)) + log ta,

a%logL(Oz, A) = =t
Solve numerically two equations R

log(a/z) = —Llogty +T"(&)/T'(&) and A =a/z,

using the method of moment estimates & = 887.96, A = 4.89 as the initial values.
Mathematica command

FindRoot[Log[a] == 0.00055+Gamma’[a]/Gammala], {a, 887.96}]

gives the maximum likelihood estimates & = 908.76, A = 5.01.

6 Parametric bootstrap

What is the standard error s4 of the maximum likelihood estimate & = 908.767 No analytical formula
is available. If we could simulate from the true population distribution Gamma(a, A), then B samples
of size n = 24 would generate B independent estimates ¢&;. The standard deviation of the sampling
distribution is the desired standard error:

— 1 B ~ 2 1 B N ~\2
=35 Zj:1 Qj, Sa = B Zj:l(“j - a) :

Parametric bootstrap approach: use Gamma(&, \) as a substitute of Gamma(a, \).

Bootstrap algorithm for finding an approximate 95% CI for a:
& as a substitute for &« — aq,...,&p — sampling distribution of & — 95% brackets c1, Ca.
Compute a confidence interval as (24 — 2,24 — ¢1). Explanation of the CI formula:
095%].:)( C1 <(3[<C2): P(Cl—éé<éé—@<02—éé)
~APla—a<a—a<c—a) =P20—c<a<2d—a¢).
Example (male heights)
I simulated B = 1000 samples of size n = 24 from Gamma(908.76; 5.01) and found & = 1039.0,

Sg = \/ﬁ > (&; — @)? = 331.29. The standard error is large because of small sample size n = 24.

Matlab commands for the male heights example:
gamrnd(908.76*ones(1000,24), 5.01*ones(1000,24)),
prctile(x,2.5), pretile(x,97.5).

7 Exact confidence intervals

A restrictive assumption on the population distribution: an IID sample (X3,...,X,,) is taken from
the normal distribution N(u, 0?) with unspecified parameters u and o.

Exact distribution XS—;“ ~ t,_1 gives an exact 100(1 — )% CI for pu: X +t, 1(a/2) - sx

A tj-distribution curve looks similar to N(0,1)-curve. Its density function is symmetric around zero:
_ T 2\
f(@) = s (1+2) 7, k>1
It has larger spread. If the number of degrees of freedom k > 3, then the variance is Tﬁz
Connection to the standard normal distribution:



. . Z
if Z,71,...,Z are N(0,1) and independent, then T th.

Let o = 0.05. The exact CI for u is wider than the approximate confidence interval X + 1.96 - s¢
valid for the very large n. For example

X £2.26- 55 for n =10 X £2.13- 55 for n =16
X +£2.06-sg forn=25 X £2.00-sg for n =60

2 (/) x2_ (1-a2)

Exact distribution Z=2% ~ \2 | gives an exact 100(1 — a)% CI for o2;  p=bs . (-1
o n—1

The chi-square distribution with £ degrees of freedom is the gamma distribution with a = g, A=
Connection to the standard normal distribution:

if Zy,...,Zy are N(0,1) and independent, then Z? + ...+ Z7 ~ x3.
The exact confidence interval for o2 is non-symmetric . Examples of 95% confidence intervals for o
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(0.47s2,3.33s?) for n = 10 (0.55s2,2.40s%) for n = 16 (0.61s2,1.945?) for n = 25
(0.72s2,1.495?) for n = 60 (0.9452,1.07s?) for n = 2000 (0.98s2,1.025?) for n = 20000

. . 2\ 2 4 . 2 . 2 2
Under the normality assumption Var(s®) = =% estimated standard error for s is /—=75°.

8 Sufficiency

Definition: T'=T'(X;, ..., X,,) is a sufficient statistic for €, if no other statistic that can be calculated
from the same sample provides any additional information as to the value of the parameter 6.

’If T is sufficient for @, then the maximum likelihood estimator is a function of T'.

Factorisation criterium: 7" is a sufficient statistic for 6, if and only if
flz, ..., x,00) = g(t,0)h(xq, ..., 2z,), where t = T'(xq,...,2,).

Examples

Bernoulli distribution. Since for a single observation, P(X = x) = (1 — 0)' 77, it follows that
flay, .. x,|0) =1, 0% (1 — 0)17% = g"%(1 — )"~ "%,
thus the number of successes T = nX is a sufficient statistic.

Bernoulli model Ber(p) with n observations = binomial model Bin(n, p) with a single observation.

Normal distribution N(z, 0?) has a two-dimensional sufficient statistic (¢1,ts) = (X0 74, iy 2)

ﬁ 1 _M 1 _ tp—2utytnp®
E— 20 = —F
i1 oV 27r6 o (2m)n/?

Also recall the gamma distribution model discussed earlier.
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