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Chapter 8. Estimation of parameters

Main issue: given a parametric model with unknown parameters θ estimate θ from an IID random
sample (X1, . . . , Xn). Two basic methods of finding good estimates

1. method of moments - simple, can be used as a first approximation for the other method,
2. maximum likelihood method - optimal for large samples.

1 List of parametric models

Bernoulli distribution Ber(p):
X = 1 with probability p, and X = 0 with probability q = 1− p, µ = p, σ2 = pq.

Binomial distribution Bin(n, p):
X = number of successes in n Bernoulli trials, p = probability of success, q = 1− p,
P(X = k) =

(
n
k

)
pkqn−k, 0 ≤ k ≤ n, µ = np, σ2 = npq.

Hypergeometric distribution Hg(N, n, p): sampling n elements out of N without replacement,

P(X = k) =
(Npk )( Nqn−k)

(Nn)
, 0≤ k ≤ min(n,Np), µ = np, σ2 = npq(1− n−1

N−1
).

Geometric distribution Geom(p):
X = number of Bernoulli trials until the first success,
P(X = k) = pqk−1, k ≥ 1, µ = 1

p
, σ2 = q

p2 .

Poisson distribution Pois(λ), an approximation for Bin(n, λ/n) with large n:
X = number of rare events,
P(X = k) = λk

k!
e−λ, k ≥ 0, µ = σ2 = λ.

Exponential distribution Exp(λ), a continuous version of geometric distribution:
X = life length without aging,
density function f(x) = λe−λx, x > 0, µ = 1

λ
, σ2 = 1

λ2 .
Normal distribution N(µ, σ2),

Central Limit Theorem predicts for the sums of many small almost independent contributions,
density function f(x) = 1√

2πσ
e−

1
2

(x−µ
σ

)2
, −∞ < x <∞.

Gamma distribution Gamma(α, λ): shape parameter α > 0 and scale parameter λ > 0,
density function f(x) = 1

Γ(α)
λαxα−1e−λx, x > 0, µ = α

λ
, σ2 = α

λ2 ,

Γ(α) =
∫∞

0 xα−1e−xdx, in particular for k = 1, 2, . . ., we have Γ(k) = (k − 1)!

2 Method of moments

Suppose we are given IID sample (X1, . . . , Xn) from a parametric population distribution D(θ1, θ2)
with population moments

E(X) = f(θ1, θ2) and E(X2) = g(θ1, θ2).

Method of moments estimators (θ̃1, θ̃2) are found after replacing the population moment with sample
moments, and then solving the equations X̄ = f(θ̃1, θ̃2) and X2 = g(θ̃1, θ̃2).

Example (geometric model)
Data Xi = number of hops that a bird does between flights, n = 130:
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Number of hops 1 2 3 4 5 6 7 8 9 10 11 12 Tot
Number of birds (Observed frequency) 48 31 20 9 6 5 4 2 1 1 2 1 130

Summary statistics
X̄ = total number of hops

number of birds
= 363

130
= 2.79,

X2 = 12 · 48
130

+ 22 · 31
130

+ . . .+ 112 · 2
130

+ 122 · 1
130

= 13.20,

s2 = 130
129

(X2 − X̄2) = 5.47,

sX̄ =
√

5.47
130

= 0.205.

An approximate 95% CI for µ, the mean number of hops per bird:
X̄ ± z0.025·sX̄ = 2.79± 1.96 · 0.205 = 2.79± 0.40.

Geometric model X ∼ Geom(p) assumes that a bird does not ”remember” the number of jumps made
so far. Method of moment estimate for p:

from µ = 1/p we build an equation X̄ = 1/p̃ and find p̃ = 1/X̄ = 0.358.
We can compute an approximate 95% CI for p using the above CI for µ:

( 1
2.79+0.40

, 1
2.79−0.40

) = (0.31, 0.42).
Model fit question: does the geometric distribution fit the data? To answer, compare the observed
frequencies to expected frequencies:

j 1 2 3 4 5 6 7+
Oj 48 31 20 9 6 5 11
Ej 46.5 29.9 19.2 12.3 7.9 5.1 9.1

Expected frequencies are computed using geometric distribution with the estimated parameter value:
Ej = E(Oj|model) = nq̃j−1p̃ = 130 · (0.642)j−1(0.358), j = 1, . . . , 6, and E7 = 130−E1 − . . .−E6.

The chi-square test statistic is small indicating a good fit of the model:

X2 =
∑7
j=1

(Oj−Ej)2

Ej
= 1.86.

3 Maximum Likelihood method

Before sampling the vector of future observations (X1, . . . , Xn) is random and has a joint distribution
f(x1, . . . xn|θ).
After sampling the observed vector (x1, . . . , xn) has a likelihood L(θ) = f(x1, . . . xn|θ), which is a
function of the unknown population parameter θ. In general, the likelihood function is not a density
function.
To illustrate draw three density curves for three parameter values θ1 < θ2 < θ3, then show how for a
given x, the likelihood curve connects the x-values from the three curves.

The maximum likelihood estimate θ̂ of θ is the value of θ that maximises L(θ).

Example (binomial model)
Consider the binomial distribution model X ∼ Bin(n, p), with a single observation corresponding to
n observations in the Ber(p) model. From µ = np, we see that the method of moment estimator p̃ = x

n

is the sample proportion.
Likelihood function L(p) =

(
n
x

)
pxqn−x. To maximise log-likelihood function

logL(p) = log
(
n
x

)
+ x log p+ (n− x) log(1− p),

take its derivative d logL(p)
dp

= x
p
− n−x

1−p , and solve the equation d logL(p)
dp

= 0. As a results we again obtain
the sample proportion p̂ = x

n
, which is consistent with our earlier notation.
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4 Large sample properties of the maximum likelihood estimates

For an IID sample (X1, . . . , Xn), the likelihood function is given by the product L(θ) =
f(x1|θ) · · · f(xn|θ) due to independence. This implies that the log-likelihood function can be treated
as a sum of independent and identically distributed random variables Yi = log f(Xi|θ). Using the
central limit theorem argument one can conclude that for large n, we have a

Normal approximation θ̂
a∼ N(θ, 1

nI(θ)
)

Fisher information in a single observation: I(θ) = E[ ∂
∂θ

log f(X|θ)]2 = −E[ ∂
2

∂θ2 log f(X|θ)].
Maximum likelihood estimators are

asymptotically unbiased, consistent, and asymptotically efficient (has minimal variance),
Cramer-Rao inequality: if θ∗ is an unbiased estimator of θ, then Var(θ∗) ≥ 1

nI(θ)
.

Approximate 100(1− α)% CI for θ: θ̂ ± zα/2√
nI(θ̂)

Example (exponential model)
Lifetimes of five batteries measured in hours

x1 = 0.5, x2 = 14.6, x3 = 5.0, x4 = 7.2, x5 = 1.2.
Consider an exponential model X ∼ Exp(λ), where λ is the death rate per hour.
Method of moment estimate:

from µ = 1/λ, we find λ̃ = 1/X̄ = 5
28.5

= 0.175.
The likelihood function grows from 0 to 2.2 · 10−7 and then falls down

L(λ) = λe−λx1λe−λx2λe−λx3λe−λx4λe−λx5 = λne−λ(x1+...+xn) = λ5e−λ·28.5

the likelihood maximum is reached at λ̂ = 0.175.
For the exponential model the maximum likelihood estimator λ̂ = 1/X̄

is biased but asymptotically unbiased:
E(λ̂) ≈ λ for large samples, since X̄ ≈ µ due to the Law of Large Numbers.

Fisher information for the exponential model is easy to compute:
∂2

∂λ2 log f(X|λ) = −1/λ2, I(λ) = −E[ ∂
2

∂λ2 log f(X|λ)] = 1
λ2 .

Thus, Var(λ̂) ≈ λ2

n
and we get an approximate 95% CI for λ: 0.175± 1.960.175√

5
= 0.175± 0.153.

5 Gamma model example

Male height sample of size n = 24 in an ascending order:
170,175,176,176,177,178,178,179,179,180,180,180,180,180,181,181,182,183,184,186,187,192,192,199.

Summary statistics: x̄ = 181.46, x2 = 32964.2, x2 − x̄2 = 37.08.
Gamma distribution model X ∼ Gamma(α, λ) is more flexible than the normal distribution model.
First, we may apply the method of moments:

E(X) = α
λ

and E(X2) = α(α+1)
λ2 imply α̃ = x̄2/(x2 − x̄2) = 887.96, λ̃ = α̃/x̄ = 4.89.

Likelihood function

L(α, λ) =
n∏
i=1

1

Γ(α)
λαxα−1

i e−λxi =
λnα

Γn(α)
(x1 · · ·xn)α−1e−λ(x1+...+xn),

notice that t1 = x1 + . . . + xn and t2 = x1 · · ·xn are a pair of sufficient statistics containing all
information from the data needed to compute the likelihood function.
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Maximisation of the log-likelihood function: set two derivatives equal to zero
∂
∂α

logL(α, λ) = n log(λ)− nΓ′(α)
Γ(α)

+ log t2,
∂
∂λ

logL(α, λ) = nα
λ
− t1.

Solve numerically two equations
log(α̂/x̄) = − 1

n
log t2 + Γ′(α̂)/Γ(α̂) and λ̂ = α̂/x̄,

using the method of moment estimates α̃ = 887.96, λ̃ = 4.89 as the initial values.
Mathematica command

FindRoot[Log[a] == 0.00055+Gamma′[a]/Gamma[a], {a, 887.96}]

gives the maximum likelihood estimates α̂ = 908.76, λ̂ = 5.01.

6 Parametric bootstrap

What is the standard error sα̂ of the maximum likelihood estimate α̂ = 908.76? No analytical formula
is available. If we could simulate from the true population distribution Gamma(α, λ), then B samples
of size n = 24 would generate B independent estimates α̂j. The standard deviation of the sampling
distribution is the desired standard error:

ᾱ = 1
B

∑B
j=1 α̂j, s2

α̂ = 1
B−1

∑B
j=1(α̂j − ᾱ)2.

Parametric bootstrap approach: use Gamma(α̂, λ̂) as a substitute of Gamma(α, λ).

Bootstrap algorithm for finding an approximate 95% CI for α:
α̂ as a substitute for α → α̂1, . . . , α̂B → sampling distribution of ˆ̂α → 95% brackets c1, c2.

Compute a confidence interval as (2α̂− c2, 2α̂− c1). Explanation of the CI formula:
0.95 ≈ P( c1 < ˆ̂α < c2)= P(c1 − α̂ < ˆ̂α− α̂ < c2 − α̂)
≈ P(c1 − α̂ < α̂− α < c2 − α̂) = P(2α̂− c2 < α < 2α̂− c1).

Example (male heights)
I simulated B = 1000 samples of size n = 24 from Gamma(908.76; 5.01) and found ᾱ = 1039.0,

sα̂ =
√

1
999

∑
(α̂j − ᾱ)2 = 331.29. The standard error is large because of small sample size n = 24.

Matlab commands for the male heights example:
gamrnd(908.76*ones(1000,24), 5.01*ones(1000,24)),
prctile(x,2.5), prctile(x,97.5).

7 Exact confidence intervals

A restrictive assumption on the population distribution: an IID sample (X1, . . . , Xn) is taken from
the normal distribution N(µ, σ2) with unspecified parameters µ and σ.

Exact distribution X̄−µ
sX̄
∼ tn−1 gives an exact 100(1− α)% CI for µ: X̄ ± tn−1(α/2) · sX̄

A tk-distribution curve looks similar to N(0,1)-curve. Its density function is symmetric around zero:

f(x) =
Γ( k+1

2
)√

kπΓ( k
2

)

(
1 + x2

k

)− k+1
2 , k ≥ 1.

It has larger spread. If the number of degrees of freedom k ≥ 3, then the variance is k
k−2

.
Connection to the standard normal distribution:
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if Z,Z1, . . . , Zk are N(0,1) and independent, then Z√
(Z2

1+...+Z2
k

)/n
∼ tk.

Let α = 0.05. The exact CI for µ is wider than the approximate confidence interval X̄ ± 1.96 · sX̄
valid for the very large n. For example

X̄ ± 2.26 · sX̄ for n = 10 X̄ ± 2.13 · sX̄ for n = 16
X̄ ± 2.06 · sX̄ for n = 25 X̄ ± 2.00 · sX̄ for n = 60

Exact distribution (n−1)s2

σ2 ∼ χ2
n−1 gives an exact 100(1− α)% CI for σ2:

(
(n−1)s2

χ2
n−1(α/2)

; (n−1)s2

χ2
n−1(1−α/2)

)

The chi-square distribution with k degrees of freedom is the gamma distribution with α = k
2
, λ = 1

2
.

Connection to the standard normal distribution:
if Z1, . . . , Zk are N(0,1) and independent, then Z2

1 + . . .+ Z2
k ∼ χ2

k.
The exact confidence interval for σ2 is non-symmetric . Examples of 95% confidence intervals for σ2:

(0.47s2, 3.33s2) for n = 10 (0.55s2, 2.40s2) for n = 16 (0.61s2, 1.94s2) for n = 25
(0.72s2, 1.49s2) for n = 60 (0.94s2, 1.07s2) for n = 2000 (0.98s2, 1.02s2) for n = 20000

Under the normality assumption Var(s2) = 2σ4

n−1
, estimated standard error for s2 is

√
2

n−1
s2.

8 Sufficiency

Definition: T = T (X1, . . . , Xn) is a sufficient statistic for θ, if no other statistic that can be calculated
from the same sample provides any additional information as to the value of the parameter θ.

If T is sufficient for θ, then the maximum likelihood estimator is a function of T .

Factorisation criterium: T is a sufficient statistic for θ, if and only if
f(x1, . . . , xn|θ) = g(t, θ)h(x1, . . . , xn), where t = T (x1, . . . , xn).

Examples
Bernoulli distribution. Since for a single observation, P(X = x) = θx(1− θ)1−x, it follows that

f(x1, . . . , xn|θ) =
∏n
i=1 θ

xi(1− θ)1−xi = θnx̄(1− θ)n−nx̄,
thus the number of successes T = nX̄ is a sufficient statistic.

Bernoulli model Ber(p) with n observations = binomial model Bin(n, p) with a single observation.

Normal distribution N(µ, σ2) has a two-dimensional sufficient statistic (t1, t2) = (
∑n
i=1 xi,

∑n
i=1 x

2
i )

n∏
i=1

1

σ
√

2π
e−

(xi−µ)2

2σ2 =
1

σn(2π)n/2
e−

t2−2µt1+nµ2

2σ2 .

Also recall the gamma distribution model discussed earlier.
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