Chapter 9. Testing hypotheses and assessing goodness of fit

1 Statistical significance

Often we need a rule based on data for choosing between two mutually exclusive hypotheses null hypothesis H_{0} : the effect of interest is zero, alternative H_{1} : the effect of interest is not zero.
H_{0} represents an established theory that must be discredited in order to demonstrate some effect H_{1}.

	Negative decision: do not reject H_{0}	Positive decision: reject H_{0} in favor of H_{1}
If H_{0} is true	True negative outcome	False positive outcome, type I error
If H_{1} is true	False negative outcome, type II error	True positive outcome

A decision rule for hypotheses testing is based a test statistic T, a function of the data with distinct typical values under H_{0} and H_{1}. For an appropriately chosen rejection region \mathcal{R} : reject H_{0} in favor of H_{1} if and only if $T \in \mathcal{R}$.
Conditional probabilities:
$\alpha=\mathrm{P}_{H_{0}}(T \in \mathcal{R}) \quad$ significance level of the test, conditional probability of type I error,
$1-\alpha=\mathrm{P}_{H_{0}}(T \notin \mathcal{R}) \quad$ specificity of the test,
$\beta=\mathrm{P}_{H_{1}}(T \notin \mathcal{R}) \quad$ conditional probability of type II error,
$1-\beta=\mathrm{P}_{H_{1}}(T \in \mathcal{R}) \quad$ sensitivity of the test or power.
If test statistic and sample size are fixed, then either α or β gets larger when \mathcal{R} is changed.
A significance test tries to control the type I error:
fix an appropriate significance level α, commonly used significance levels are $5 \%, 1 \%, 0.1 \%$, find \mathcal{R} from $\alpha=\mathrm{P}\left(T \in \mathcal{R} \mid H_{0}\right)$ using the null distribution of the test statistic T.

2 Large-sample test for the proportion

Binomial model $X \sim \operatorname{Bin}(n, p)$. The corresponding sample proportion $\hat{p}=\frac{X}{n}$.
For $H_{0}: p=p_{0}$ use the test statistic $Z=\frac{X-n p_{0}}{\sqrt{n p_{0} q_{0}}}=\frac{\hat{p}-p_{0}}{\sqrt{p_{0} q_{0} / n}}$.
Three different composite alternative hypotheses:
one-sided $H_{1}: p>p_{0}, \quad$ one-sided $H_{1}: p<p_{0}, \quad$ two-sided $H_{1}: p \neq p_{0}$.
By the central limit theorem, the null distribution of the Z-score is approximately normal: $Z \stackrel{a}{\sim} \mathrm{~N}(0,1)$
find z_{α} from $\Phi\left(z_{\alpha}\right)=1-\alpha$ using the normal distribution table.

Alternative H_{1}	Rejection rule	P -value
$p>p_{0}$	$Z \geq z_{\alpha}$	$\mathrm{P}\left(Z \geq Z_{\text {obs }}\right)$
$p<p_{0}$	$Z \leq-z_{\alpha}$	$\mathrm{P}\left(Z \leq Z_{\text {obs }}\right)$
$p \neq p_{0}$	$Z \leq-z_{\alpha / 2}$ or $Z \geq z_{\alpha / 2}$	$2 \cdot \mathrm{P}\left(Z \geq\left\|Z_{\text {obs }}\right\|\right)$

P -value of the test

P-value is the probability of obtaining a test statistic value as extreme or more extreme than the observed one, given that H_{0} is true. For a given significance level α, reject H_{0}, if $\mathrm{P} \leq \alpha$, and do not reject H_{0}, if $\mathrm{P}>\alpha$.

Power function

Consider two simple hypotheses $H_{0}: p=p_{0}$ and $H_{1}: p=p_{1}$, assuming $p_{1}>p_{0}$. The power function of the one-sided test can be computed using the normal approximation for $Z_{1}=\frac{Y-n p_{1}}{\sqrt{n p_{1} q_{1}}}$ under H_{1} :

$$
\begin{aligned}
\operatorname{Pw}\left(p_{1}\right) & =\mathrm{P}_{H_{1}}\left(\frac{Y-n p_{0}}{\sqrt{n p_{0} q_{0}}} \geq z_{\alpha}\right) \\
& =\mathrm{P}_{H_{1}}\left(\frac{Y-n p_{1}}{\sqrt{n p_{1} q_{1}}} \geq \frac{z_{\alpha} \sqrt{p_{0} q_{0}}+\sqrt{n}\left(p_{0}-p_{1}\right)}{\sqrt{p_{1} q_{1}}}\right) \approx 1-\Phi\left(\frac{z_{\alpha} \sqrt{p_{0} q_{0}}+\sqrt{n}\left(p_{0}-p_{1}\right)}{\sqrt{p_{1} q_{1}}}\right) .
\end{aligned}
$$

Planning of sample size: given α and β, choose sample size n such that $\sqrt{n}=\frac{z_{\alpha} \sqrt{p_{0} q_{0}}+z_{\beta} \sqrt{p_{1} q_{1}}}{\left|p_{1}-p_{0}\right|}$.
Example (extrasensory perception, ESP)
An experiment: guess the suits of $n=100$ cards chosen at random with replacement from a deck of cards with four suits. Binomial model: the number of cards guessed correctly $Y \sim \operatorname{Bin}(100, p)$. Hypotheses of interest
$H_{0}: p=0.25$ (pure guessing), $H_{1}: p>0.25$ (ESP ability).
Rejection rule at 5% significance level

$$
\left\{\frac{\hat{p}-0.25}{0.0433} \geq 1.645\right\}=\{\hat{p} \geq 0.32\}=\{Y \geq 32\}
$$

With a simple alternative $H_{1}: p=0.30$ the power of the test is $1-\Phi\left(\frac{1.645 \cdot 0.433-0.5}{0.458}\right)=32 \%$. The sample size required for the 90% power is $n=\left(\frac{1.645 \cdot 0.433+1 \cdot 28 \cdot 0.458}{0.05}\right)^{2}=675$.

If the observed sample count is $Y_{\text {obs }}=30$, then $Z_{\text {obs }}=\frac{0.3-0.25}{0.0433}=1.15$ and the one-sided P -value is $\mathrm{P}(Z \geq 1.15)=12.5 \%$. The result is not significant, do not reject H_{0}.

3 Small-sample test for the proportion

Binomial model $X \sim \operatorname{Bin}(n, p)$ with $H_{0}: p=p_{0}$. For small n, use exact null distribution $X \sim \operatorname{Bin}\left(n, p_{0}\right)$.
Example (extrasensory perception)
ESP test: guess the suits of $n=20$ cards. Model: the number of cards guessed correctly is $X \sim$ $\operatorname{Bin}(20, p)$. For $H_{0}: p=0.25$, the null distribution is

$$
\begin{array}{lc|c|c|c|c}
\operatorname{Bin}(20,0.25) \text { table } \quad \begin{array}{c}
x \\
\mathrm{P}(X \geq x)
\end{array} \mathrm{.101} & .041 & 10 & 11 \\
\hline
\end{array}
$$

For the one-sided alternative $H_{1}: p>0.25$ and $\alpha=5 \%$, the rejection rule is $\{X \geq 9\}$. Notice that the exact significance level $=4.1 \%$. Warning for "fishing expeditions".

Power function

p_{1}	0.27	0.30	0.40	0.5	0.60	0.70
$\mathrm{P}\left(X \geq 9 \mid p=p_{1}\right)$	0.064	0.113	0.404	0.748	0.934	0.995

4 Tests for the mean

Test $H_{0}: \mu=\mu_{0}$ for continuous or discrete data. Large-sample test for mean is used when the population distribution is not necessarily normal but the sample size n is sufficiently large.

$$
H_{0}: \mu=\mu_{0}, \text { test statistic } T=\frac{\bar{X}-\mu_{0}}{s_{\bar{X}}} \text { with an approximate null distribution } T \stackrel{a}{\sim} \mathrm{~N}(0,1) .
$$

One-sample t-test is used for small n, under the assumption that the population distribution is normal.

$$
H_{0}: \mu=\mu_{0} \text {, test statistic: } T=\frac{\bar{X}-\mu_{0}}{s_{\bar{X}}} \text { with an exact null distribution } T \sim t_{n-1} .
$$

CI method of hypotheses testing

at 5% significance level the rejection rule is $\left\{\mu_{0} \notin 95 \%\right.$ confidence interval for the mean $\}$.

5 Likelihood ratio test

A general method of finding asymptotically optimal tests (having the largest power for a given α).

Two simple hypotheses

For testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ use the likelihood ratio $\Lambda=\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}$ as a test statistic. Large values of Λ suggest that H_{0} explains the data set better than H_{1}, while a small Λ indicates that H_{1} explains the data set better. Likelihood ratio test rejects H_{0} for small values of Λ.

Neyman-Pearson lemma: the likelihood ratio test is optimal in the case of two simple hypothesis.

Nested hypotheses

With a pair of nested parameter sets $\Omega_{0} \subset \Omega$ we get two composite alternatives, $H_{0}: \theta \in \Omega_{0}$ and H_{1} : $\theta \in \Omega \backslash \Omega_{0}$. Under two nested hypotheses $H_{0}: \theta \in \Omega_{0}, H: \theta \in \Omega$, we get two maximum likelihood estimates
$\hat{\theta}_{0}=$ maximises the likelihood function $L(\theta)$ over $\theta \in \Omega_{0}$,
$\hat{\theta}=$ maximises the likelihood function $L(\theta)$ over $\theta \in \Omega$.
Generalised likelihood ratio test: reject H_{0} for small values of $\frac{L\left(\hat{\theta}_{0}\right)}{L(\hat{\theta})}$ or equivalently

$$
\text { Reject } H_{0}: \theta \in \Omega_{0} \text { for large values of } \Delta=\log L(\hat{\theta})-\log L\left(\hat{\theta}_{0}\right) \text {. }
$$

Approximate null distribution: $2 \Delta \stackrel{a}{\sim} \chi_{\mathrm{df}}^{2}$, where $\mathrm{df}=\operatorname{dim}(\Omega)-\operatorname{dim}\left(\Omega_{0}\right)$.

6 Pearson's chi-square test

Data: each of n IID observations belongs to one of J classes with probabilities $\left(p_{1}, \ldots, p_{J}\right)$. Data is summarised as the vector of observed counts

$$
\left(O_{1}, \ldots, O_{J}\right) \sim \operatorname{Mn}\left(n ; p_{1}, \ldots, p_{J}\right), \quad \mathrm{P}\left(O_{1}=k_{1}, \ldots, O_{J}=k_{J}\right)=\frac{n!}{k_{1}!\cdots k_{J}!} p_{1}^{k_{1}} \cdots p_{J}^{k_{J}}
$$

Consider a parametric model for the data
$H_{0}:\left(p_{1}, \ldots, p_{J}\right)=\left(v_{1}(\lambda), \ldots, v_{J}(\lambda)\right)$ with unknown parameters $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$.
To see if the proposed model fits the data, compute $\hat{\lambda}$, the maximum likelihood estimate of λ, and then the expected cell counts $E_{j}=n \cdot v_{j}(\hat{\lambda})$.

Chi-square test statistic: $X^{2}=\sum_{j=1}^{J} \frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}}$ is derived from the likelihood ratio test $2 \Delta \approx X^{2}$.
The approximate null distribution of X^{2} is χ_{J-1-r}^{2}, since $\operatorname{dim}\left(\Omega_{0}\right)=r$ and $\operatorname{dim}(\Omega)=J-1$.
$\mathrm{df}=$ (number of cells) $-1-$ (number of independent parameters estimated from the data)
Since the chi-square test is approximate, all expected counts are recommended to be at least 5 . If not, combine small cells and recalculate the number of degrees of freedom df.

Example (geometric model)
H_{0} : number of hops that a bird does between flights has a geometric distribution Geom (p).
Using $\hat{p}=0.358$ and $J=7$ we obtain $X^{2}=1.86$. With $\mathrm{df}=5$ and P -value $=0.87$ we do not reject the geometric distribution model for number of bird hops.

7 Gender ratio example

A 1889 study in Germany recorded the numbers of boys Y_{1}, \ldots, Y_{n} for $n=6115$ families with 12 children each. Consider three nested models for the distribution of the number of boys Y

Model 1, $Y \sim \operatorname{Bin}(12,0.5) \subset$ Model 2, $Y \sim \operatorname{Bin}(12, p) \subset$ General model, $p_{j}=\mathrm{E}(Y=j)$.
Model 1 leads to a simple null hypothesis $H_{0}: p_{j}=\binom{12}{j} \cdot 2^{-12}, j=0,1, \ldots, 12$.
Expected cell counts $E_{j}=6115 \cdot\binom{12}{j} \cdot 2^{-12}$. Observed $X^{2}=249.2$, df $=12$. Since $\chi_{12}^{2}(0.005)=28.3$, we reject H_{0} at 0.5% level.

cell j	O_{j}	E_{j} model 1	$\frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}}$	E_{j} model 2	$\frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}}$
0	7	1.5	20.2	2.3	9.6
1	45	17.9	41.0	26.1	13.7
2	181	98.5	69.1	132.8	17.5
3	478	328.4	68.1	410.0	11.3
4	829	739.0	11.0	854.2	0.7
5	1112	1182.4	4.2	1265.6	18.6
6	1343	1379.5	1.0	1367.3	0.4
7	1033	1182.4	18.9	1085.2	2.5
8	670	739.0	6.4	628.1	2.8
9	286	328.4	5.5	258.5	2.9
10	104	98.5	0.3	71.8	14.4
11	24	17.9	2.1	12.1	11.7
12	3	1.5	1.5	0.9	4.9
Total	6115	6115	249.2	6115	110.5

Model 2 is more flexible and leads to a composite null hypothesis
$H_{0}: p_{j}=\binom{12}{j} \cdot p^{j}(1-p)^{12-j}, j=0, \ldots, 12,0 \leq p \leq 1$.
The expected cell counts

$$
E_{j}=6115 \cdot\binom{12}{j} \cdot \hat{p}^{j} \cdot(1-\hat{p})^{12-j}, \quad \hat{p}=\frac{\text { number of boys }}{\text { number of children }}=\frac{1 \cdot 45+2 \cdot 181+\ldots+12 \cdot 3}{6115 \cdot 12}=0.4808 .
$$

Model 2 is also rejected at 0.5% level: observed $X^{2}=110.5, r=1, \mathrm{df}=11, \chi_{11}^{2}(0.005)=26.76$.
Conclusion: even more flexible model is needed to address large variation in the observed cell counts. Suggestion: allow the probability of a male child p to differ from family to family.

