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Chapter 9. Testing hypotheses and assessing goodness of fit

1 Statistical significance

Often we need a rule based on data for choosing between two mutually exclusive hypotheses
null hypothesis H0: the effect of interest is zero,
alternative H1: the effect of interest is not zero.

H0 represents an established theory that must be discredited in order to demonstrate some effect H1.

Negative decision: do not reject H0 Positive decision: reject H0 in favor of H1

If H0 is true True negative outcome False positive outcome, type I error
If H1 is true False negative outcome, type II error True positive outcome

A decision rule for hypotheses testing is based a test statistic T , a function of the data with distinct
typical values under H0 and H1. For an appropriately chosen rejection region R:

reject H0 in favor of H1 if and only if T ∈ R.
Conditional probabilities:

α = PH0(T ∈ R) significance level of the test, conditional probability of type I error,
1− α = PH0(T /∈ R) specificity of the test,

β = PH1(T /∈ R) conditional probability of type II error,
1− β = PH1(T ∈ R) sensitivity of the test or power.

If test statistic and sample size are fixed, then either α or β gets larger when R is changed.

A significance test tries to control the type I error:
fix an appropriate significance level α, commonly used significance levels are 5%, 1%, 0.1%,
find R from α = P(T ∈ R|H0) using the null distribution of the test statistic T .

2 Large-sample test for the proportion

Binomial model X ∼ Bin(n, p). The corresponding sample proportion p̂ = X
n

.

For H0: p = p0 use the test statistic Z = X−np0√
np0q0

= p̂−p0√
p0q0/n

.

Three different composite alternative hypotheses:
one-sided H1: p > p0, one-sided H1: p < p0, two-sided H1: p 6= p0.

By the central limit theorem, the null distribution of the Z-score is approximately normal: Z
a∼ N(0,1)

find zα from Φ(zα) = 1− α using the normal distribution table.

Alternative H1 Rejection rule P-value
p > p0 Z ≥ zα P(Z ≥ Zobs)
p < p0 Z ≤ −zα P(Z ≤ Zobs)
p 6= p0 Z ≤ −zα/2 or Z ≥ zα/2 2 · P(Z ≥ |Zobs|)
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P-value of the test
P-value is the probability of obtaining a test statistic value as extreme or more extreme than the
observed one, given that H0 is true. For a given significance level α,

reject H0, if P ≤ α, and do not reject H0, if P > α.

Power function
Consider two simple hypotheses H0: p = p0 and H1: p = p1, assuming p1 > p0. The power function of
the one-sided test can be computed using the normal approximation for Z1 = Y−np1√

np1q1
under H1:

Pw(p1) = PH1

(Y − np0√
np0q0

≥ zα

)
= PH1

(Y − np1√
np1q1

≥
zα
√
p0q0 +

√
n(p0 − p1)

√
p1q1

)
≈ 1− Φ

(zα√p0q0 +
√
n(p0 − p1)

√
p1q1

)
.

Planning of sample size: given α and β, choose sample size n such that
√
n =

zα
√
p0q0+zβ

√
p1q1

|p1−p0| .

Example (extrasensory perception, ESP)
An experiment: guess the suits of n = 100 cards chosen at random with replacement from a deck
of cards with four suits. Binomial model: the number of cards guessed correctly Y ∼ Bin(100, p).
Hypotheses of interest

H0 : p = 0.25 (pure guessing), H1 : p > 0.25 (ESP ability).
Rejection rule at 5% significance level
{ p̂−0.25

0.0433
≥ 1.645} = {p̂ ≥ 0.32} = {Y ≥ 32}.

With a simple alternative H1 : p = 0.30 the power of the test is 1− Φ(1.645·0.433−0.5
0.458

) = 32%.
The sample size required for the 90% power is n = (1.645·0.433+1.28·0.458

0.05
)2 = 675.

If the observed sample count is Yobs = 30, then Zobs = 0.3−0.25
0.0433

= 1.15 and the one-sided P-value is
P(Z ≥ 1.15) = 12.5%. The result is not significant, do not reject H0.

3 Small-sample test for the proportion

Binomial modelX ∼ Bin(n, p) withH0: p = p0. For small n, use exact null distributionX ∼ Bin(n, p0).

Example (extrasensory perception)
ESP test: guess the suits of n = 20 cards. Model: the number of cards guessed correctly is X ∼
Bin(20, p). For H0 : p = 0.25, the null distribution is

Bin(20,0.25) table
x 8 9 10 11

P(X ≥ x) .101 .041 .014 0.004

For the one-sided alternative H1 : p > 0.25 and α = 5%, the rejection rule is {X ≥ 9}. Notice that
the exact significance level = 4.1%. Warning for “fishing expeditions”.

Power function
p1 0.27 0.30 0.40 0.5 0.60 0.70

P(X ≥ 9|p = p1) 0.064 0.113 0.404 0.748 0.934 0.995
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4 Tests for the mean

Test H0: µ = µ0 for continuous or discrete data. Large-sample test for mean is used when the
population distribution is not necessarily normal but the sample size n is sufficiently large.

H0: µ = µ0, test statistic T = X̄−µ0

sX̄
with an approximate null distribution T

a∼ N(0,1).

One-sample t-test is used for small n, under the assumption that the population distribution is normal.

H0: µ = µ0, test statistic: T = X̄−µ0

sX̄
with an exact null distribution T ∼ tn−1.

CI method of hypotheses testing
at 5% significance level the rejection rule is {µ0 /∈ 95% confidence interval for the mean}.

5 Likelihood ratio test

A general method of finding asymptotically optimal tests (having the largest power for a given α).

Two simple hypotheses
For testing H0: θ = θ0 against H1: θ = θ1 use the likelihood ratio Λ = L(θ0)

L(θ1)
as a test statistic. Large

values of Λ suggest that H0 explains the data set better than H1, while a small Λ indicates that H1

explains the data set better. Likelihood ratio test rejects H0 for small values of Λ.
Neyman-Pearson lemma: the likelihood ratio test is optimal in the case of two simple hypothesis.

Nested hypotheses
With a pair of nested parameter sets Ω0 ⊂ Ω we get two composite alternatives, H0: θ ∈ Ω0 and H1:
θ ∈ Ω \ Ω0. Under two nested hypotheses H0: θ ∈ Ω0, H: θ ∈ Ω, we get two maximum likelihood
estimates

θ̂0 = maximises the likelihood function L(θ) over θ ∈ Ω0,
θ̂ = maximises the likelihood function L(θ) over θ ∈ Ω.

Generalised likelihood ratio test: reject H0 for small values of L(θ̂0)

L(θ̂)
or equivalently

Reject H0: θ ∈ Ω0 for large values of ∆ = logL(θ̂)− logL(θ̂0).

Approximate null distribution: 2∆
a∼ χ2

df , where df = dim(Ω) – dim(Ω0).

6 Pearson’s chi-square test

Data: each of n IID observations belongs to one of J classes with probabilities (p1, . . . , pJ). Data is
summarised as the vector of observed counts

(O1, . . . , OJ) ∼ Mn(n; p1, . . . , pJ), P(O1 = k1, . . . , OJ = kJ) = n!
k1!···kJ !

pk1
1 · · · p

kJ
J .

Consider a parametric model for the data
H0: (p1, . . . , pJ) = (v1(λ), . . . , vJ(λ)) with unknown parameters λ = (λ1, . . . , λr).

To see if the proposed model fits the data, compute λ̂, the maximum likelihood estimate of λ, and
then the expected cell counts Ej = n · vj(λ̂).
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Chi-square test statistic: X2=
∑J

j=1
(Oj−Ej)2

Ej
is derived from the likelihood ratio test 2∆ ≈ X2.

The approximate null distribution of X2 is χ2
J−1−r, since dim(Ω0) = r and dim(Ω) = J − 1.

df = (number of cells) – 1 – (number of independent parameters estimated from the data)

Since the chi-square test is approximate, all expected counts are recommended to be at least 5. If
not, combine small cells and recalculate the number of degrees of freedom df.

Example (geometric model)
H0 : number of hops that a bird does between flights has a geometric distribution Geom(p).
Using p̂ = 0.358 and J = 7 we obtain X2 = 1.86. With df = 5 and P-value = 0.87 we do not reject
the geometric distribution model for number of bird hops.

7 Gender ratio example

A 1889 study in Germany recorded the numbers of boys Y1, . . . , Yn for n = 6115 families with 12
children each. Consider three nested models for the distribution of the number of boys Y

Model 1, Y ∼ Bin(12, 0.5) ⊂ Model 2, Y ∼ Bin(12, p) ⊂ General model, pj = E(Y = j).

Model 1 leads to a simple null hypothesis H0: pj =
(

12
j

)
· 2−12, j = 0, 1, . . . , 12.

Expected cell counts Ej = 6115 ·
(

12
j

)
· 2−12. Observed X2 = 249.2, df = 12. Since χ2

12(0.005) = 28.3,

we reject H0 at 0.5% level.

cell j Oj Ej model 1
(Oj−Ej)2

Ej
Ej model 2

(Oj−Ej)2

Ej

0 7 1.5 20.2 2.3 9.6
1 45 17.9 41.0 26.1 13.7
2 181 98.5 69.1 132.8 17.5
3 478 328.4 68.1 410.0 11.3
4 829 739.0 11.0 854.2 0.7
5 1112 1182.4 4.2 1265.6 18.6
6 1343 1379.5 1.0 1367.3 0.4
7 1033 1182.4 18.9 1085.2 2.5
8 670 739.0 6.4 628.1 2.8
9 286 328.4 5.5 258.5 2.9

10 104 98.5 0.3 71.8 14.4
11 24 17.9 2.1 12.1 11.7
12 3 1.5 1.5 0.9 4.9

Total 6115 6115 249.2 6115 110.5

Model 2 is more flexible and leads to a composite null hypothesis
H0: pj =

(
12
j

)
· pj(1− p)12−j, j = 0, . . . , 12, 0 ≤ p ≤ 1. The expected cell counts

Ej = 6115 ·
(

12
j

)
· p̂j · (1− p̂)12−j, p̂ = number of boys

number of children
= 1·45+2·181+...+12·3

6115·12
= 0.4808.

Model 2 is also rejected at 0.5% level: observed X2 = 110.5, r = 1, df = 11, χ2
11(0.005) = 26.76.

Conclusion: even more flexible model is needed to address large variation in the observed cell counts.
Suggestion: allow the probability of a male child p to differ from family to family.
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