Serik Sagitov, Chalmers and GU, February 14, 2018

Solutions chapter 10

Problem 10.2

IID sample $\left(X_{1}, \ldots, X_{n}\right)$ from the uniform distribution $\mathrm{U}(0,1)$.
(a) For a fixed x, the empirical distribution function $F_{n}(x)$ is the sample proportion estimate of $p=F(x)=x$. The variance of $F_{n}(x)$ is

$$
\sigma_{F_{n}(x)}^{2}=\frac{p(1-p)}{n}=\frac{x(1-x)}{n}
$$

the that

$$
\sigma_{F_{n}(x)}=\sqrt{\frac{x(1-x)}{n}}, \quad x \in[0,1] .
$$

(b) Generate 100 samples of size $n=16$. For each sample plot $F_{n}(x)-F(x)$ and relate what you see to your answer to (a). Matlab code

```
x=rand(16,100);
y=sort(x)';
for k=1:100
plot(y(k,:),(1:16)/16-y(k,:),'`)
hold on
end
```


Problem 10.5

We have

$$
\begin{array}{ll}
F_{n}(u)=\frac{1}{n}\left[1_{\left\{X_{1} \leq u\right\}}+\ldots+1_{\left\{X_{n} \leq u\right\}}\right], & \mathrm{E}\left(F_{n}(u)\right)=F(u), \\
F_{n}(v)=\frac{1}{n}\left[1_{\left\{X_{1} \leq v\right\}}+\ldots+1_{\left\{X_{n} \leq v\right\}}\right], & \mathrm{E}\left(F_{n}(v)\right)=F(v) .
\end{array}
$$

Assuming $u<v$, we get

$$
\begin{aligned}
\mathrm{E}\left(F_{n}(u) \cdot F_{n}(v)\right) & =\frac{1}{n^{2}}\left[\sum_{i=1}^{n} \mathrm{E}\left(1_{\left\{X_{i} \leq u\right\}} 1_{\left\{X_{i} \leq v\right\}}\right)+\sum_{i=1}^{n} \sum_{j \neq i} \mathrm{E}\left(1_{\left\{X_{i} \leq u\right\}} 1_{\left\{X_{j} \leq v\right\}}\right)\right] \\
& =\frac{1}{n^{2}}\left[\sum_{i=1}^{n} F(u)+\sum_{i=1}^{n} \sum_{j \neq i} F(u) F(v)\right] \\
& =\frac{1}{n}[F(u)+(n-1) F(u) F(v)] .
\end{aligned}
$$

Finish by using

$$
\operatorname{Cov}\left(F_{n}(u), F_{n}(v)\right)=\mathrm{E}\left(F_{n}(u) \cdot F_{n}(v)\right)-\mathrm{E}\left(F_{n}(u)\right) \cdot \mathrm{E}\left(F_{n}(v)\right) .
$$

Problem 10.6

Ordered sample $n=59$
12.2812 .9213 .3313 .6413 .6513 .6613 .68
13.7313 .7513 .8313 .9613 .9813 .9814 .01
14.04
14.1014 .1914 .2314 .2714 .3014 .3214 .41
14.4114 .4314 .4414 .4714 .4914 .5214 .56
14.57
14.5714 .6214 .6514 .6814 .7314 .7514 .77
14.8014 .8714 .9014 .9215 .0215 .0315 .10
15.13
25% quantile
50% quantile
15.1515 .1815 .2115 .2815 .3115 .3815 .40
15.4715 .4715 .4915 .5615 .6315 .9117 .09
(a) Use Matlab commands

```
x=data vector;
stairs(sort(x),(1:length(x))/length(x)) % empirical cdf
hist(x) % histogram, the same as hist(x,10)
normplot(x) % normal probability plot
prctile(x,90) % 0.90-quantile
```

The distribution appears to be rather close to normal. The 10% quantile

$$
\frac{X_{(6)}+X_{(7)}}{2}=\frac{13.66+13.68}{2}=13.67 .
$$

(b) Since $\bar{x}=14.58$ and $s=0.78$, the one-sided 99% of the population distribution for the natural wax is

$$
(-\infty, 14.58+2.33 \cdot 0.78)=(-\infty, 16.40)
$$

Expected means

$$
\begin{array}{ll}
1 \% \text { dilution } & \mu_{1}=14.58 \cdot 0.99+85 \cdot 0.01=15.28
\end{array} \quad \text { can not be detected } \text { ceter }
$$

Problems 10.11, 10.13, 10.14.

$$
1-F(t)=e^{-\alpha t^{\beta}}, \quad f(t)=\alpha \beta t^{\beta-1} e^{-\alpha t^{\beta}}, \quad h(t)=\alpha \beta t^{\beta-1} .
$$

- If $\beta=1$, then $h(t)=\alpha$ is constant and the distribution is memoryless.
- If $0<\beta<1$, then $h(t)$ decreases with t meaning that the longer you live the healthier you become.
- If $\beta>1$, then $h(t)$ increases with t meaning that the older individuals die more often than the younger.

Problem 10.29

Stem and leaf display for $n=26$ observations including $k=5$ outliers:

133:7
134:134
135:002244
135:88

136:36

High: 141.2, 143.3, 146.5, 147.8, 148.8
Let N be the number of outliers in a non-parametric bootstrap sample.
(a) Due to sampling with replacement we have $N \sim \operatorname{Bin}\left(26, \frac{5}{26}\right)$.
(b) Find $\mathrm{P}(N \geq 10)$:

$$
\begin{aligned}
\mathrm{P}(N \leq 9) & =\operatorname{binocdf}(9,26,5 / 26)=0.9821 \\
\mathrm{P}(N \geq 10) & =1-0.9821=0.018
\end{aligned}
$$

(c) In $B=1000$ bootstrap samples, we expect

$$
B \cdot \mathrm{P}(N \geq 10)=18
$$

samples to contain 10 or more of outliers.
(d) The probability that a bootstrap sample is composed entirely of these outliers is

$$
\mathrm{P}(N=25)=(5 / 26)^{26}=2.4 \cdot 10^{-19}
$$

Problem 10.37

Same data as in Problem 10.6.
(a) The Matlab commands
trimmean $(\mathrm{x}, 10)$
trimmean $(\mathrm{x}, 20)$
give $\bar{X}_{0.1}=14.586$ and $\bar{X}_{0.2}=14.605$.
$m=$ trimmean(X,percent) calculates the trimmed mean of the values in X. For a vector input, m is the mean of X , excluding the highest and lowest k data values, where $\mathrm{k}=\mathrm{n}^{*}($ percent $/ 100) / 2$ and where n is the number of values in X .
(b) An approximate $90 \% \mathrm{CI}$ for the mean is

$$
14.58 \pm 1.645 \cdot \frac{0.78}{\sqrt{59}}=14.58 \pm 0.17=(14.41 ; 14.75)
$$

(c) Nonparametric 90% CI for the population median M is $\left(X_{(k)}, X_{(60-k)}\right)$, where $\mathrm{P}(Y<k)=0.05$ and $Y \sim \operatorname{Bin}(59,0.5)$. Applying the normal approximation for $\operatorname{Bin}(n, p)$ with continuity correction

$$
\mathrm{P}(Y<k)=\mathrm{P}(Y \leq k-1) \approx \Phi\left(\frac{k-0.5-n p}{\sqrt{n p(1-p)}}\right)
$$

we arrive at equation

$$
\frac{k-0.5-\frac{59}{2}}{\sqrt{\frac{59}{4}}}=-1.645
$$

that gives $k=24$. This yields

$$
\left(X_{(k)}, X_{(60-k)}\right)=\left(X_{(24)}, X_{(36)}\right)=(14.43 ; 14.75)
$$

(d) The Matlab commands for the non-parametric bootstrap

```
n=59; B=1000;
z=x(random('unid',n,n,B)); % ('unid',n) - uniform discrete [1,n], 1000 samples of size n
t1=trimmean(z,10);
t2=trimmean(z,20);
std(t1)
std(t2)
```

give the standard errors 0.1034 and 0.1004 for $\bar{X}_{0.1}$ and $\bar{X}_{0.2}$ respectively.
(e) Matlab commands

$$
\mathrm{c} 11=\operatorname{prctile}(\mathrm{t} 1,5)
$$

$\mathrm{c} 12=\operatorname{prctile}(\mathrm{t} 1,95)$
$\mathrm{c} 21=\operatorname{prctile}(\mathrm{t} 2,5)$
$\mathrm{c} 22=\operatorname{prctile}(\mathrm{t} 2,95)$
give 90% CIs

$$
\begin{array}{ll}
\text { for } \mu_{0.1}: & \left(2 \bar{X}_{0.1}-c 12 ; 2 \bar{X}_{0.1}-c 11\right)=(14.435 ; 14.765), \\
\text { for } \mu_{0.2}: & \left(2 \bar{X}_{0.2}-c 22 ; 2 \bar{X}_{0.2}-c 21\right)=(14.463 ; 14.784) .
\end{array}
$$

(f) Matlab commands

```
iqr(x)
median(abs(x-median(x)))
```

Warning: $\operatorname{mad}(\mathrm{x})$ in Matlab stands for the mean abs. dev.
(g) Matlab commands (vector z comes from the (d) part)

```
q=prctile(z,75);
hist(q)
std(q)
```

give the standard error 0.1332 of the upper quartile.

Problem 10.40

Matlab command ($\mathrm{x}=$ control and $\mathrm{y}=$ seeded data)
qqplot(x,y)
fits the line $y=2.5 x$ claiming 2.5 times more rainfall from seeded clouds.
Matlab command

$$
\text { qqplot(} \log (\mathrm{x}), \log (\mathrm{y}))
$$

fits the line

$$
\log (y)=2+0.8 \log (x)
$$

meaning a decreasing slope in the relationship $y=7.4 x^{0.8}$.

