Serik Sagitov, Chalmers and GU, February 14, 2018

Solutions chapter 11

Problem 11.1

Four random numbers generated from a normal distribution

$$
X_{1}=1.1650, \quad X_{2}=0.6268, \quad X_{3}=0.0751, \quad X_{4}=0.3516
$$

along with five random numbers with the same variance σ^{2} but perhaps a different mean

$$
Y_{1}=0.3035, \quad Y_{2}=2.6961, \quad Y_{3}=1.0591, \quad Y_{4}=2.7971, \quad Y_{4}=1.2641
$$

(a) $\bar{X}=0.5546, \bar{Y}=1.6240, \bar{Y}-\bar{X}=1.0694$
(b) We have $s_{x}^{2}=0.2163, s_{y}^{2}=1.1795, s_{p}^{2}=0.7667$. The latter is an unbiased estimate of σ^{2}.
(c) $s_{\bar{y}-\bar{x}}=0.5874$
(d) Based on t_{7}-distribution, an exact 90% CI for $\left(\mu_{y}-\mu_{x}\right)$ is 1.0694 ± 1.1128.
(e) More appropriate to use a two-sided test.
(f) From the observed test statistic value $T=1.8206$, we find the two-sided $P=0.1115$ using the Matlab command2* $\operatorname{tcdf}(-1.8206,7)$.
(g) No, because the P-value is larger than 0.01.
(h) Given $\sigma^{2}=1$, we answer differently to some of the the above questions:
b: $\sigma^{2}=1$,
c: $s_{\bar{y}-\bar{x}}=0.0 .6708$,
d: 1.0694 ± 1.1035,
f: $Z=1.5942$ two-sided $P=0.11$.

Problem 11.3

In the "two independent samples" setting we have two ways of estimating the variance of $\bar{X}-\bar{Y}$:
(a) $s_{p}^{2}\left(\frac{1}{n}+\frac{1}{m}\right)$, if $\sigma_{x}=\sigma_{y}$,
(b) $\frac{s_{x}^{2}}{n}+\frac{s_{y}^{2}}{m}$ without the assumption of equal variances.

If $m=n$, then these two estimates are identical:

$$
s_{p}^{2}\left(\frac{1}{n}+\frac{1}{m}\right)=\frac{2}{n} \cdot \frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}+\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{2 n-2}=\frac{s_{x}^{2}+s_{y}^{2}}{n}=\frac{s_{x}^{2}}{n}+\frac{s_{y}^{2}}{m} .
$$

Problem 11.8

Test the null hypothesis of no drug effect
H_{0} : the drug is not effective for reducing high blood pressure,
using the Mann-Whitney $=$ Wilcoxon rank sum test.
Suggested measurement design: during the same 10 days take measurements on 4 people, two on the treatment X, X^{\prime}, and two controls Y, Y^{\prime} :

$$
\begin{aligned}
& X_{1}, \ldots, X_{10} \\
& X_{1}^{\prime}, \ldots, X_{10}^{\prime} \\
& Y_{1}, \ldots, Y_{10} ; \\
& Y_{1}^{\prime}, \ldots, Y_{10}^{\prime} .
\end{aligned}
$$

Dependencies across the days and the people. Proper design of two independent samples: 20 people on the treatment and 20 controls:

$$
\begin{aligned}
& X_{1}, \ldots, X_{20} \\
& Y_{1}, \ldots, Y_{20}
\end{aligned}
$$

Problem 11.13

Let X_{1}, \ldots, X_{25} be IID from $\mathrm{N}(0.3,1)$. Consider testing at $\alpha=0.05$

$$
H_{0}: \mu=0, \quad H_{1}: \mu>0 .
$$

(a) Normal distribution model $X \sim \mathrm{~N}(\mu, 1)$. Since $\bar{X} \sim \mathrm{~N}(\mu, 1 / 25)$, we reject H_{0} for

$$
5 \bar{X}>1.645, \quad \bar{X}>0.33
$$

We know the true value $\mu=0.3$. The power of the test

$$
1-\beta=\mathrm{P}_{H_{1}}(\bar{X}>0.33)=1-\Phi\left(\frac{0.33-0.3}{1 / 5}\right)=1-\Phi(0.15)=0.44
$$

(b) The sign test statistic

$$
T=\text { number of positive } X_{i}, \quad T \stackrel{H_{0}}{\sim} \operatorname{Bin}\left(25, \frac{1}{2}\right) \approx \mathrm{N}\left(\frac{25}{2}, \frac{25}{4}\right) .
$$

Reject H_{0} for $T \geq k$, where

$$
0.05=\mathrm{P}_{H_{0}}(T \geq k)=\mathrm{P}_{H_{0}}(T>k-1) \approx 1-\Phi\left(\frac{k-0.5-12.5}{5 / 2}\right)=1-\Phi\left(\frac{k-13}{2.5}\right)
$$

so that

$$
\frac{k-13}{2.5}=1.645, \quad k=17
$$

With $\mu=0.3$, we have

$$
\mathrm{P}_{H_{1}}(X>0)=1-\Phi(-0.3)=\Phi(0.3)=0.62
$$

and

$$
T \stackrel{H_{1}}{\sim} \operatorname{Bin}(25,0.62) \approx \mathrm{N}(15.5,5.89) .
$$

Te power of the sign test

$$
1-\beta=\mathrm{P}_{H_{1}}(T \geq 17)=1-\Phi\left(\frac{17-0.5-15.5}{2.4}\right)=1-\Phi(0.41)=0.34
$$

is lower.

Problem 11.15

Two independent samples of of equal size n are taken from two population distributions with equal standard deviation $\sigma=10$. Approximate 95% CI for $\left(\mu_{x}-\mu_{y}\right)$ is

$$
\bar{X}-\bar{Y} \pm 1.96 \cdot 10 \cdot \sqrt{\frac{2}{n}}
$$

If the CI has width $2=55.44 / \sqrt{n}$, then $n \approx 768$.

Problem 11.21

Data: millions of cycles until failure for two types of engine bearings

	Rank	Type I	Type II	Rank
	1	3.03	3.19	2
	8	5.53	4.26	3
	9	5.60	4.47	4
	11	9.30	4.53	5
	13	9.92	4.67	6
	14	12.51	4.69	7
	17	12.95	6.79	10
	18	15.21	9.37	12
	19	16.04	12.75	15
	20	16.84	12.78	16
Rank sum	130			80

Test the null hypothesis of no difference against the two-sided alternative

$$
H_{0}: \mu_{x}=\mu_{y}, \quad H_{1}: \mu_{x} \neq \mu_{y}
$$

(a) Two-sample t-test

$$
\bar{X}=10.693, \quad \bar{Y}=6.750, \quad s_{x}^{2}=23.226, \quad s_{y}^{2}=12.978, \quad s_{\bar{x}-\bar{y}}=\sqrt{s_{\bar{x}}^{2}+s_{\bar{y}}^{2}}=1.903
$$

Assume equal variances. The observed test statistic

$$
T=\frac{10.693-6.750}{1.903}=2.072
$$

With $\mathrm{df}=18$, the two-sided $P=0.053$ is found using the Matlab command $2^{*} \operatorname{tcdf}(-2.072,18)$.
(b) Wilcoxon rank sum test statistics $R_{x}=130, R_{y}=80$. From the table on page A22 we find that the two-sided P -value is between $0.05<P<0.10$.
(c) The non-parametric test in (b) is more relevant, since both normplot(x) and normplot(y) show non-normality of the data distribution.
(d) To estimate the probability π, that a type I bearing will outlast a type II bearing, we turn to the ordered pooled sample

X-YYYYYY-XX-Y-X-Y-XX-YY-XXXX.

Pick a pair (X, Y) at random, then by the division rule of probability

$$
\mathrm{P}(X<Y)=\frac{\text { number of }\left(x_{i}<y_{j}\right)}{\text { total number of pairs }\left(x_{i}, y_{j}\right)}=\frac{10+4+4+3+2+2}{100}=0.25 .
$$

This implies a point estimate $\hat{\pi}=0.75$.
(e) The matlab commands

$$
\begin{aligned}
& \mathrm{u}=\mathrm{x}(\text { random('unid', } 10,10,1000)) ; \\
& \mathrm{v}=\mathrm{y}(\text { random('unid', } 10,10,1000) \text {); } \\
& \mathrm{N}=\text { zeros }(1,1000) ; \\
& \text { for } \mathrm{k}=1: 1000 \text { for } \mathrm{i}=1: 10 \text { for } \mathrm{j}=1: 10 \\
& \mathrm{~N}(\mathrm{k})=\mathrm{N}(\mathrm{k})+(\mathrm{u}(\mathrm{i}, \mathrm{k})>\mathrm{v}(\mathrm{j}, \mathrm{k})) ; \\
& \text { end,end,end } \\
& \mathrm{P}=\mathrm{N} / 100 \\
& \operatorname{hist}(\mathrm{P}, 20) \\
& \operatorname{std}(\mathrm{P})
\end{aligned}
$$

estimate the sampling distribution of $\hat{\pi}$ with $s_{\hat{\pi}}=0.1187$.
(f) The Matlab commands

$$
\text { c1=prctile }(\mathrm{P}, 5)
$$

$\mathrm{c} 2=\operatorname{prctile}(\mathrm{P}, 95)$
give a $90 \% \mathrm{CI}$ for π : $(2 \hat{\pi}-c 2 ; 2 \hat{\pi}-c 1)=(0.58 ; 0.96)$.

Problem 11.28

Two-sided signed rank test. For $n=10,20,25$ and $\alpha=0.05,0.01$, compare the critical values from the table and using the normal approximation of the null distribution. Using

$$
\begin{aligned}
& W_{0.05}(n)=\frac{n(n+1)}{4}-1.96 \cdot \sqrt{\frac{n(n+1)(2 n+1)}{24}}, \\
& W_{0.01}(n)=\frac{n(n+1)}{4}-2.58 \cdot \sqrt{\frac{n(n+1)(2 n+1)}{24}},
\end{aligned}
$$

we find (table/normal approximation)

	$n=10$	$n=20$	$n=25$
$\frac{n(n+1)}{4}$	27.5	105	162.5
$\sqrt{\frac{n(n+1)(2 n+1)}{24}}$	9.81	26.79	37.17
$\alpha=0.05$	$8 / 8.3$	$52 / 53.5$	$89 / 89.65$
$\alpha=0.01$	$3 / 2.2$	$38 / 36.0$	$68 / 67.6$

Problem 11.27

Find the exact null distribution for the test statistic of the signed rank test with $n=4$.
Model: IID differences D_{1}, \ldots, D_{n} whose population distribution is symmetric around the unknown median M. Test the null hypothesis of no difference $H_{0}: M=0$ using the signed ranks defined as follows:
step 1: remove signs $\left|D_{1}\right|, \ldots,\left|D_{n}\right|$,
step 2: assign ranks $1, \ldots, n$ to $\left|D_{1}\right|, \ldots,\left|D_{n}\right|$,
step 3: attach accordingly the original signs to the ranks $1, \ldots, n$,
step 4: compute W_{+}as the sum of the positive ranks.
Under $H_{0}: M=0$, on the step 4 , the signs \pm are assigned symmetrically at random. There are 16 equally likely outcomes

$$
\begin{array}{|cccc|c}
1 & 2 & 3 & 4 & W_{+} \\
\hline- & - & - & - & 0 \\
+ & - & - & - & 1 \\
- & + & - & - & 2 \\
+ & + & - & - & 3 \\
- & - & + & - & 3 \\
+ & - & + & - & 4 \\
- & + & + & - & 5 \\
+ & + & + & - & 6 \\
- & - & - & + & 4 \\
+ & - & - & + & 5 \\
- & + & - & + & 6 \\
+ & + & - & + & 7 \\
- & - & + & + & 7 \\
+ & - & + & + & 8 \\
- & + & + & + & 9 \\
+ & + & + & + & 10
\end{array}
$$

Thus the null distribution is given by the table

$$
\begin{array}{cccccccccccc}
k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
p_{k} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{2}{16} & \frac{2}{16} & \frac{2}{16} & \frac{2}{16} & \frac{2}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16}
\end{array}
$$

The smallest one-sided P -value is $\frac{1}{16}=0.06$.

Problem 11.34

Two population distributions with $\sigma_{x}=\sigma_{y}=10$. Two samples of sizes $n=25$ can be taken in two ways
(a) paired with $\operatorname{Cov}\left(X_{i}, Y_{i}\right)=50, i=1, \ldots, 25$,
(b) unpaired X_{1}, \ldots, X_{25} and Y_{1}, \ldots, Y_{25}.

Compare the power curves for testing

$$
H_{0}: \mu_{x}=\mu_{y}, \quad H_{1}: \mu_{x}>\mu_{y}, \quad \alpha=0.05
$$

(a) The variance of a difference

$$
\operatorname{Var}(D)=\operatorname{Var}(X-Y)=\sigma_{x}^{2}+\sigma_{y}^{2}-2 \operatorname{Cov}(X, Y)=100+100-100=100
$$

Using the normal approximation we get

$$
\bar{D}=\bar{X}-\bar{Y} \approx \mathrm{~N}\left(\mu_{x}-\mu_{y}, \frac{100}{25}\right)=\mathrm{N}(\delta, 4)
$$

The rejection region $\{\bar{D}>2 \cdot 1.645=3.29\}$. The power function

$$
\operatorname{Pw}(\delta)=\mathrm{P}(\bar{D}>3.29) \approx 1-\Phi\left(\frac{3.29-\delta}{2}\right) .
$$

(b) Two independent samples

$$
\bar{X}-\bar{Y} \approx \mathrm{~N}\left(\mu_{x}-\mu_{y}, \frac{100}{25}+\frac{100}{25}\right)=\mathrm{N}(\delta, 8) .
$$

The rejection region $\{\bar{X}-\bar{Y}>\sqrt{8} \cdot 1.645=4.65\}$. The power function

$$
\operatorname{Pw}(\delta)=\mathrm{P}(\bar{X}-\bar{Y}>4.65) \approx 1-\Phi\left(\frac{4.65-\delta}{2.83}\right) .
$$

See Figure 1.

Figure 1: Two power functions of Problem 11.34. More power with paired sample design.

Problem 11.36

Paired samples

$$
\begin{aligned}
& \bar{X}=85.26, \quad s_{x}=21.20, \quad s_{\bar{x}}=5.47, \quad n=15, \\
& \bar{Y}=84.82, \quad s_{y}=21.55, \quad s_{\bar{y}}=5.57, \quad m=15 \text {, } \\
& \bar{D}=\bar{X}-\bar{Y}=0.44 \text {, } \\
& s_{d}=4.63, \quad s_{\bar{x}-\bar{y}}=1.20 .
\end{aligned}
$$

If the pairing had been erroneously ignored, then the two independent samples formula would give 6 times larger standard error

$$
s_{\bar{x}-\bar{y}}=7.81
$$

To test $H_{0}: \mu_{x}=\mu_{y}$ against $H_{1}: \mu_{x} \neq \mu_{y}$ assume $D \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ and apply one-sample t-test

$$
T=\frac{\bar{D}}{s_{\bar{d}}}=0.368
$$

With df $=14$, two-sided $P=0.718$, we can not reject H_{0}.
Without normality assumption apply the Wilcoxon signed rank test. Matlab command

$$
\operatorname{signrank}(x, y)
$$

computes the two-sided $P=0.604$. We can not reject H_{0}.

Problem 11.52

Possible explanations
(a) room with a window \leftarrow rich patient \rightarrow recovers faster,
(b) smoker \leftarrow the man is a loser \rightarrow wife gets cancer,
(c) no breakfast \leftarrow lack of discipline \rightarrow accident,
(d) choose to change the school \leftarrow lower grades before \rightarrow lower grades after,
(e) match two babies with two mothers,
(f) abstain from alcohol \leftarrow poor health,
(g) marijuana \leftarrow schizophrenia,
(h) total time together $=$ time before wedding + time after wedding,
(i) better physical condition \rightarrow attend church.

