SERIK SAGITOV, Chalmers and GU, February 14, 2018

Solutions chapter 11

Problem 11.1

Four random numbers generated from a normal distribution

 $X_1 = 1.1650, \quad X_2 = 0.6268, \quad X_3 = 0.0751, \quad X_4 = 0.3516,$

along with five random numbers with the same variance σ^2 but perhaps a different mean

 $Y_1 = 0.3035, \quad Y_2 = 2.6961, \quad Y_3 = 1.0591, \quad Y_4 = 2.7971, \quad Y_4 = 1.2641.$

- (a) $\bar{X} = 0.5546, \bar{Y} = 1.6240, \bar{Y} \bar{X} = 1.0694$
- (b) We have $s_x^2 = 0.2163$, $s_y^2 = 1.1795$, $s_p^2 = 0.7667$. The latter is an unbiased estimate of σ^2 .
- (c) $s_{\bar{y}-\bar{x}} = 0.5874$
- (d) Based on t_7 -distribution, an exact 90% CI for $(\mu_y \mu_x)$ is 1.0694 ± 1.1128 .
- (e) More appropriate to use a two-sided test.

(f) From the observed test statistic value T = 1.8206, we find the two-sided P = 0.1115 using the Matlab command2*tcdf(-1.8206,7).

- (g) No, because the P-value is larger than 0.01.
- (h) Given $\sigma^2 = 1$, we answer differently to some of the the above questions:

b: $\sigma^2 = 1$, c: $s_{\bar{y}-\bar{x}} = 0.0.6708$, d: 1.0694 ± 1.1035, f: Z = 1.5942 two-sided P = 0.11.

Problem 11.3

In the "two independent samples" setting we have two ways of estimating the variance of $\bar{X} - \bar{Y}$:

(a) $s_p^2(\frac{1}{n} + \frac{1}{m})$, if $\sigma_x = \sigma_y$, (b) $\frac{s_x^2}{n} + \frac{s_y^2}{m}$ without the assumption of equal variances.

If m = n, then these two estimates are identical:

$$s_p^2\left(\frac{1}{n} + \frac{1}{m}\right) = \frac{2}{n} \cdot \frac{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{i=1}^n (Y_i - \bar{Y})^2}{2n - 2} = \frac{s_x^2 + s_y^2}{n} = \frac{s_x^2}{n} + \frac{s_y^2}{m}.$$

Test the null hypothesis of no drug effect

 H_0 : the drug is not effective for reducing high blood pressure,

using the Mann-Whitney = Wilcoxon rank sum test.

Suggested measurement design: during the same 10 days take measurements on 4 people, two on the treatment X, X', and two controls Y, Y':

 $X_1, \dots, X_{10};$ $X'_1, \dots, X'_{10};$ $Y_1, \dots, Y_{10};$ $Y'_1, \dots, Y'_{10}.$

Dependencies across the days and the people. Proper design of two independent samples: 20 people on the treatment and 20 controls:

$$X_1, \dots, X_{20};$$

 $Y_1, \dots, Y_{20}.$

Problem 11.13

Let X_1, \ldots, X_{25} be IID from N(0.3, 1). Consider testing at $\alpha = 0.05$

$$H_0: \mu = 0, \qquad H_1: \mu > 0.$$

(a) Normal distribution model $X \sim N(\mu, 1)$. Since $\bar{X} \sim N(\mu, 1/25)$, we reject H_0 for

 $5\bar{X} > 1.645, \qquad \bar{X} > 0.33.$

We know the true value $\mu = 0.3$. The power of the test

$$1 - \beta = P_{H_1}(\bar{X} > 0.33) = 1 - \Phi\left(\frac{0.33 - 0.3}{1/5}\right) = 1 - \Phi(0.15) = 0.44.$$

(b) The sign test statistic

$$T =$$
number of positive X_i , $T \stackrel{H_0}{\sim} Bin(25, \frac{1}{2}) \approx N(\frac{25}{2}, \frac{25}{4}).$

Reject H_0 for $T \ge k$, where

$$0.05 = P_{H_0}(T \ge k) = P_{H_0}(T > k - 1) \approx 1 - \Phi\left(\frac{k - 0.5 - 12.5}{5/2}\right) = 1 - \Phi\left(\frac{k - 13}{2.5}\right),$$

so that

$$\frac{k-13}{2.5} = 1.645, \qquad k = 17.$$

With $\mu = 0.3$, we have

$$P_{H_1}(X > 0) = 1 - \Phi(-0.3) = \Phi(0.3) = 0.62$$

and

$$T \stackrel{H_1}{\sim} \operatorname{Bin}(25, 0.62) \approx \operatorname{N}(15.5, 5.89).$$

Te power of the sign test

$$1 - \beta = P_{H_1}(T \ge 17) = 1 - \Phi\left(\frac{17 - 0.5 - 15.5}{2.4}\right) = 1 - \Phi(0.41) = 0.34$$

is lower.

Problem 11.15

Two independent samples of of equal size n are taken from two population distributions with equal standard deviation $\sigma = 10$. Approximate 95% CI for $(\mu_x - \mu_y)$ is

$$\bar{X} - \bar{Y} \pm 1.96 \cdot 10 \cdot \sqrt{\frac{2}{n}}$$

If the CI has width $2 = 55.44/\sqrt{n}$, then $n \approx 768$.

Problem 11.21

Data: millions of cycles until failure for two types of engine bearings

	Rank	Type I	Type II	Rank
	1	3.03	3.19	2
	8	5.53	4.26	3
	9	5.60	4.47	4
	11	9.30	4.53	5
	13	9.92	4.67	6
	14	12.51	4.69	7
	17	12.95	6.79	10
	18	15.21	9.37	12
	19	16.04	12.75	15
	20	16.84	12.78	16
Rank sum	130			80

Test the null hypothesis of no difference against the two-sided alternative

$$H_0: \mu_x = \mu_y, \qquad H_1: \mu_x \neq \mu_y.$$

(a) Two-sample t-test

$$\bar{X} = 10.693, \quad \bar{Y} = 6.750, \quad s_x^2 = 23.226, \quad s_y^2 = 12.978, \quad s_{\bar{x}-\bar{y}} = \sqrt{s_{\bar{x}}^2 + s_{\bar{y}}^2} = 1.903.$$

Assume equal variances. The observed test statistic

$$T = \frac{10.693 - 6.750}{1.903} = 2.072.$$

With df = 18, the two-sided P = 0.053 is found using the Matlab command 2^{*} tcdf(-2.072,18).

(b) Wilcoxon rank sum test statistics $R_x = 130$, $R_y = 80$. From the table on page A22 we find that the two-sided P-value is between 0.05 < P < 0.10.

(c) The non-parametric test in (b) is more relevant, since both normplot(x) and normplot(y) show non-normality of the data distribution.

(d) To estimate the probability π , that a type I bearing will outlast a type II bearing, we turn to the ordered pooled sample

X-YYYYYYXX-Y-X-Y-XX-YY-XXXX.

Pick a pair (X, Y) at random, then by the division rule of probability

$$P(X < Y) = \frac{\text{number of } (x_i < y_j)}{\text{total number of pairs } (x_i, y_j)} = \frac{10 + 4 + 4 + 3 + 2 + 2}{100} = 0.25$$

This implies a point estimate $\hat{\pi} = 0.75$.

(e) The matlab commands

u=x(random('unid',10,10,1000));v=y(random('unid',10,10,1000));N=zeros(1,1000);for k=1:1000 for i=1:10 for j=1:10N(k)=N(k)+(u(i,k)>v(j,k));end,end,endP=N/100;hist(P,20)std(P)

estimate the sampling distribution of $\hat{\pi}$ with $s_{\hat{\pi}} = 0.1187$.

(f) The Matlab commands

c1=prctile(P,5) c2=prctile(P,95)

give a 90% CI for π : $(2\hat{\pi} - c^2; 2\hat{\pi} - c^1) = (0.58; 0.96).$

Problem 11.28

Two-sided signed rank test. For n = 10, 20, 25 and $\alpha = 0.05, 0.01$, compare the critical values from the table and using the normal approximation of the null distribution. Using

$$W_{0.05}(n) = \frac{n(n+1)}{4} - 1.96 \cdot \sqrt{\frac{n(n+1)(2n+1)}{24}},$$
$$W_{0.01}(n) = \frac{n(n+1)}{4} - 2.58 \cdot \sqrt{\frac{n(n+1)(2n+1)}{24}},$$

we find (table/normal approximation)

	n = 10	n = 20	n = 25
$\frac{n(n+1)}{4}$	27.5	105	162.5
$\sqrt{\frac{n(n+1)(2n+1)}{24}}$	9.81	26.79	37.17
$\alpha = 0.05$	8/8.3	52/53.5	89/89.65
$\alpha = 0.01$	3/2.2	38/36.0	68/67.6

Find the exact null distribution for the test statistic of the signed rank test with n = 4.

Model: IID differences D_1, \ldots, D_n whose population distribution is symmetric around the unknown median M. Test the null hypothesis of no difference $H_0 : M = 0$ using the signed ranks defined as follows:

- step 1: remove signs $|D_1|, \ldots, |D_n|$,
- step 2: assign ranks $1, \ldots, n$ to $|D_1|, \ldots, |D_n|$,

step 3: attach accordingly the original signs to the ranks $1, \ldots, n$,

step 4: compute W_+ as the sum of the positive ranks.

Under $H_0: M = 0$, on the step 4, the signs \pm are assigned symmetrically at random. There are 16 equally likely outcomes

1	2	3	4	W_+
-	_	—		0
+	_	—	_	1
-	+	—		2
+	+	—	_	3
-	—	+	_	3
+	_	+	—	4
-	+	+	—	5
+	+	+	- - +	6
-	—	—	+	4
+	_	_	+	5
+ -	+	—	+	6
+	+	_	+	7
-	_	+	+	7
+	_	+	+	8
-	+	+	+	9
+	+	+	+	10

Thus the null distribution is given by the table

k	0	1	2	3	4	5	6	7	8	9	10
p_k	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$

The smallest one-sided P-value is $\frac{1}{16} = 0.06$.

Two population distributions with $\sigma_x = \sigma_y = 10$. Two samples of sizes n = 25 can be taken in two ways

(a) paired with $Cov(X_i, Y_i) = 50, i = 1, ..., 25$, (b) unpaired $X_1, ..., X_{25}$ and $Y_1, ..., Y_{25}$.

Compare the power curves for testing

 $H_0: \mu_x = \mu_y, \qquad H_1: \mu_x > \mu_y, \qquad \alpha = 0.05.$

(a) The variance of a difference

$$Var(D) = Var(X - Y) = \sigma_x^2 + \sigma_y^2 - 2Cov(X, Y) = 100 + 100 - 100 = 100.$$

Using the normal approximation we get

$$\bar{D} = \bar{X} - \bar{Y} \approx \mathcal{N}(\mu_x - \mu_y, \frac{100}{25}) = \mathcal{N}(\delta, 4)$$

The rejection region $\{\overline{D} > 2 \cdot 1.645 = 3.29\}$. The power function

$$Pw(\delta) = P(\bar{D} > 3.29) \approx 1 - \Phi(\frac{3.29 - \delta}{2}).$$

(b) Two independent samples

$$\bar{X} - \bar{Y} \approx N(\mu_x - \mu_y, \frac{100}{25} + \frac{100}{25}) = N(\delta, 8).$$

The rejection region $\{\bar{X} - \bar{Y} > \sqrt{8} \cdot 1.645 = 4.65\}$. The power function

$$Pw(\delta) = P(\bar{X} - \bar{Y} > 4.65) \approx 1 - \Phi(\frac{4.65 - \delta}{2.83}).$$

See Figure 1.

Paired samples

$$\begin{split} X &= 85.26, \quad s_x = 21.20, \quad s_{\bar{x}} = 5.47, \quad n = 15, \\ \bar{Y} &= 84.82, \quad s_y = 21.55, \quad s_{\bar{y}} = 5.57, \quad m = 15, \\ \bar{D} &= \bar{X} - \bar{Y} = 0.44, \\ s_d &= 4.63, \quad s_{\bar{x} - \bar{y}} = 1.20. \end{split}$$

If the pairing had been erroneously ignored, then the two independent samples formula would give 6 times larger standard error

$$s_{\bar{x}-\bar{y}} = 7.81.$$

To test $H_0: \mu_x = \mu_y$ against $H_1: \mu_x \neq \mu_y$ assume $D \sim N(\mu, \sigma^2)$ and apply one-sample t-test

$$T = \frac{\bar{D}}{s_{\bar{d}}} = 0.368.$$

With df = 14, two-sided P = 0.718, we can not reject H_0 . Without normality assumption apply the Wilcoxon signed rank test. Matlab command

signrank(x,y)

computes the two-sided P = 0.604. We can not reject H_0 .

Problem 11.52

Possible explanations

- (a) room with a window \leftarrow rich patient \rightarrow recovers faster,
- (b) smoker \leftarrow the man is a loser \rightarrow wife gets cancer,
- (c) no breakfast \leftarrow lack of discipline \rightarrow accident,
- (d) choose to change the school \leftarrow lower grades before \rightarrow lower grades after,
- (e) match two babies with two mothers,
- (f) abstain from alcohol \leftarrow poor health,
- (g) marijuana \leftarrow schizophrenia,
- (h) total time together = time before wedding + time after wedding,
- (i) better physical condition \rightarrow attend church.