SERIK SAGITOV, Chalmers and GU, February 21, 2018

Solutions chapter 12

Matlab commands:

x = data matrixboxplot(x) anova1(x) anova2(x)

Problem 12.3

Consider one-way ANOVA test statistic

$$F = \frac{MS_A}{MS_E} = \frac{\frac{J}{I-1}\sum_{i=1}^{I}(\bar{Y}_{i\cdot} - \bar{Y}_{\cdot\cdot})^2}{\frac{1}{I(J-1)}\sum_{i=1}^{I}\sum_{j=1}^{J}(Y_{ij} - \bar{Y}_{i\cdot})^2}$$

For I = 2 and J = n, put

$$\bar{Y}_{1\cdot} = \bar{X}, \quad \bar{Y}_{2\cdot} = \bar{Y}, \quad \bar{Y}_{\cdot\cdot} = \frac{X+Y}{2}.$$

In this two-sample setting, the F-test statistic

$$F = \frac{n[(\bar{X} - \frac{\bar{X} + \bar{Y}}{2})^2 + (\bar{Y} - \frac{\bar{X} + \bar{Y}}{2})^2]}{\frac{1}{2(n-1)} [\sum_{j=1}^n (X_j - \bar{X})^2 + \sum_{j=1}^n (Y_j - \bar{Y})^2]} = \frac{2n(\frac{\bar{X} - \bar{Y}}{2})^2}{s_p^2} = (\frac{\bar{X} - \bar{Y}}{s_p\sqrt{\frac{2}{n}}})^2,$$

equals T^2 , where $T = \frac{\bar{X} - \bar{Y}}{s_p \sqrt{\frac{2}{n}}}$ is the two-sample t-test statistic.

Problem 12.5

Derive the likelihood ratio test for the one-way layout and show that it is equivalent to the F-test.

The null hypothesis says that the data Y_{ij} comes from a single normal distribution

$$H_0:\mu_1=\ldots=\mu_I=\mu$$

described by two parameters μ and σ^2 , so that dim $\Omega_0 = 2$, while dim $\Omega = I + 1$. The likelihood ratio

$$\Lambda = \frac{L_0(\hat{\mu}, \hat{\sigma}_0^2)}{L(\hat{\mu}_1, \dots, \hat{\mu}_I, \hat{\sigma}^2)},$$

where putting n = IJ,

$$L(\mu_1, \dots, \mu_I, \sigma^2) = \prod_{i=1}^{I} \prod_{j=1}^{J} \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(Y_{ij} - \mu_i)^2}{2\sigma^2}} \propto \sigma^{-n} \exp\{-\sum \sum_{j=1}^{I} \frac{(Y_{ij} - \mu_i)^2}{2\sigma^2}\},\$$
$$L_0(\mu, \sigma^2) = L(\mu, \dots, \mu, \sigma^2) \propto \sigma^{-n} \exp\{-\sum \sum_{j=1}^{I} \frac{(Y_{ij} - \mu_i)^2}{2\sigma^2}\}.$$

We find the maximum likelihood estimates to be

$$\hat{\mu} = \bar{Y}_{..}, \quad \hat{\sigma}_0^2 = \frac{SS_T}{n}, \quad \hat{\mu}_i = \bar{Y}_{i.}, \quad \hat{\sigma}^2 = \frac{SS_E}{n},$$

which yields

$$\Lambda = \frac{\hat{\sigma}_0^{-n} \exp\{-\Sigma \Sigma \frac{(Y_{ij} - \hat{\mu})^2}{2\hat{\sigma}_0^2}\}}{\hat{\sigma}^{-n} \exp\{-\Sigma \Sigma \frac{(Y_{ij} - \hat{\mu}_i)^2}{2\hat{\sigma}^2}\}} = (\frac{\hat{\sigma}_0^2}{\hat{\sigma}^2})^{-n/2}.$$

The likelihood ratio test rejects the null hypothesis for small values of Λ or equivalently for large values of

$$\frac{\hat{\sigma}_0^2}{\hat{\sigma}^2} = \frac{SS_T}{SS_E} = 1 + \frac{SS_A}{SS_E} = 1 + \frac{J(I-1)MS_A}{I(J-1)MS_E} = 1 + \frac{J(I-1)}{I(J-1)} \cdot F$$

that is for large values of F-test statistics. This leads to an asymptotic approximation of the $F_{J(I-1),I(J-1)}$ in terms of the chi-square distribution with df = I - 1.

Problem 12.10

One-way layout with $I = 10, J = 7, X_{ij} \sim N(\mu_i, \sigma^2)$. Pooled sample variance

$$s_p^2 = MS_E = \frac{1}{I(J-1)} \sum_i \sum_j (X_{ij} - \bar{X}_{i.})^2$$

uses df = I(J - 1) = 60.

(a) A 95% CI for a single difference $\mu_u - \mu_v$

$$\bar{X}_{u} - \bar{X}_{v} \pm t_{60}(0.025) s_p \sqrt{\frac{2}{J}}$$

has the half-width of

$$2.82 \cdot \frac{s_p}{\sqrt{J}}$$

(b) Bonferroni simultaneous 95% CI for $\binom{10}{2} = 45$ differences $\mu_u - \mu_v$

$$\bar{X}_{u} - \bar{X}_{v} \pm t_{60} (\frac{0.025}{45}) s_p \sqrt{\frac{2}{J}}$$

has the half-width of

 $4.79 \cdot \frac{s_p}{\sqrt{J}},$

giving the ratio

$$\frac{4.79}{2.82} = 1.7$$

(c) Tukey simultaneous 95% CI for differences
$$\mu_u - \mu_v$$

$$\bar{X}_{u} - \bar{X}_{v} \pm q_{10,60}(0.05) \frac{s_p}{\sqrt{J}}$$

has the half-width of

 $4.65 \cdot \frac{s_p}{\sqrt{J}},$

giving the ratio

$$\frac{\text{Bonferroni}}{\text{Tukey}} = \frac{4.79}{4.65} = 1.03$$

Problem 12.21

For I = 4 control groups of J = 5 mice each, test H_0 : no systematic differences between groups.

Significant differences among the control groups, although not expected, might be attributable to changes in the experimental conditions.

One way ANOVA table

Source	\mathbf{SS}	df	MS	\mathbf{F}	Р
Columns	27230	3	9078	2.271	0.12
Error	63950	16	3997		
Total	91190	19			

Do not reject H_0 at 10% significance level. Boxplots show non-normality. The largest difference is between the third and the fourth boxplots. Control question: why the third boxplot has no upper whisker?

Kruskal-Wallis test. Pooled sample ranks

group I	2	6	9	11	14	$\bar{R}_{1.} = 8.4$
group II	4	5	8	17	19	$\bar{R}_{2.} = 10.6$
group III	1	3	7	12.5	12.5	$\bar{R}_{3.} = 7.2$
group IV	10	15	16	18	20	$\bar{R}_{4.} = 15.8$

Kruskal-Wallis test statistic

$$K = \frac{12 \cdot 5}{20 \cdot 21} \left((8.4 - 10.5)^2 + (10.6 - 10.5)^2 + (7.2 - 10.5)^2 + (15.8 - 10.5)^2 \right) = 6.20.$$

Since $\chi_3^2(0.1) = 6.25$, we do not reject H_0 at 10% significance level.

Problem 12.26

I = 3 treatments on J = 10 subjects with K = 1 observations per cell. H_0 : no treatment effects.

Results of anova2(x):

Source	SS	df	MS	\mathbf{F}
Columns (blocks)	0.517	9	0.0574	0.4683
Rows (treatments)	1.081	2	0.5404	4.406
Error	2.208	18	0.1227	
Total	3.806	29		

Two P-values: columns = 0.8772, rows = 0.0277. Reject H_0 at 5% significance level.

Friedman's test. Ranking within blocks:

The observed value of the Friedman test statistic

$$Q = \frac{12 \cdot 10}{3 \cdot 4} \left((1.8 - 2)^2 + (1.9 - 2)^2 + (2.3 - 2)^2 \right) = 1.4.$$

Since $\chi_2^2(0.1) = 4.61$, we can not reject H_0 even at 10% significance level.

Problem 12.28

I = 3 types of stopwatches, different sample sizes.

 H_0 : no systematic differences between groups.

One way ANOVA table

Source	SS	df	MS	\mathbf{F}
Columns	446.6	2	223.3	0.4974
Error	7632	17	449	
Total	8079	19		

gives the P-value of 0.6167. We do not reject H_0 .

Kruskal-Wallis test. Pooled sample ranks

group I: 1, 2, 3, 4, 7, 10.5, 14, 15, 20,	$\bar{R}_{1.} = 8.5$
group II: 6, 8, 12, 16.5, 16.5, 19,	$\bar{R}_{2.} = 13.0$
group III: 5, 9, 10.5, 13, 18,	$\bar{R}_{3.} = 11.1$

The observed value of the test statistic

$$K = \frac{12}{20 \cdot 21} \left(9 \cdot (8.5 - 10.5)^2 + 6 \cdot (13.0 - 10.5)^2 + 5 \cdot (11.1 - 10.5)^2 \right) = 2.15.$$

Since $\chi_2^2(0.1) = 4.61$, we do not reject H_0 even at 10% significance level.

Problem 12.34

Forty eight survival times: I = 3 poisons and J = 4 treatments with K = 4 observations per cell. Cell means for the survival times

	А	В	\mathbf{C}	D
Ι	4.125	8.800	5.675	6.100
II	3.200	8.150	3.750	6.625
III	2.100	3.350	2.350	3.250

Draw three profiles: I and II cross each other, and profile III is more flat. Three null hypotheses of interest

 H_A : no poison effect, H_B : no treatment effect, H_{AB} : no interaction.

(a) Survival in hours x data matrix. Results of anova2(x,4)

Source	\mathbf{SS}	df	MS	\mathbf{F}
Columns (treatments)	91.9	3	30.63	14.01
Rows (poisons)	103	2	51.52	23.57
Intercation	24.75	6	4.124	1.887
Error	78.69	36	2.186	
Total	298.4	47		

Three P-values: columns = 0.0000, rows = 0.0000, interaction = 0.1100. Reject H_A and H_B at 1% significance level, we can not reject H_{AB} even at 10% significance level:

3 poisons act differently, 4 treatments act differently, some indication of interaction.

Analysis of the residuals $Y_{ijk} - \bar{Y}_{ij}$.

normal probability plot reveals non-normality, skewness = 0.59, kurtosis = 4.1.

Figure 1: Left panel: survival times. Right panel: death rates.

(b) Transformed data: death rate = 1/survival time. Cell means for the death rates

	А	В	\mathbf{C}	D
Ι	0.249	0.116	0.186	0.169
II	0.327	0.139	0.271	0.171
III	0.480	0.303	0.427	0.309

Draw three profiles: they look more parallel.

New data matrix y=x.(-1). Results of anova2(y,4):

Source	\mathbf{SS}	df	MS	\mathbf{F}
Columns (treatments)	0.204	3	0.068	28.41
Rows (poisons)	0.349	2	0.174	72.84
Intercation	0.01157	6	0.0026	1.091
Error	0.086	36	0.0024	
Total	0.6544	47		

Three P-values: columns = 0.0000, rows = 0.0000, interaction = 0.3864. Reject H_A and H_B at 1% significance level, accept H_{AB} at 10% significance level. Conclusions

3 poisons act differently,4 treatments act differently,no interaction,the normal probability plot of residuals reveals a closer fit to normality assumption.