Serik Sagitov, Chalmers and GU, March 2, 2018

Solutions chapter 14

Problem 14.2

Ten pairs

$$
\begin{array}{l|llllllllll}
x & 0.34 & 1.38 & -0.65 & 0.68 & 1.40 & -0.88 & -0.30 & -1.18 & 0.50 & -1.75 \\
\hline y & 0.27 & 1.34 & -0.53 & 0.35 & 1.28 & -0.98 & -0.72 & -0.81 & 0.64 & -1.59
\end{array}
$$

with

$$
\bar{x}=-0.046, \quad \bar{y}=-0.075, \quad s_{x}=1.076, \quad s_{y}=0.996, \quad r=0.98
$$

Draw a scatter plot using

x	-1.75	-1.18	-0.88	-0.65	-0.30	0.34	0.50	0.68	1.38	1.40
y	-1.59	-0.81	-0.98	-0.53	-0.72	0.27	0.64	0.35	1.34	1.28

(a) Simple linear regression model

$$
Y=\beta_{0}+\beta_{1} x+\epsilon, \quad \epsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)
$$

Fitting a straight line using

$$
y-\bar{y}=r \cdot \frac{s_{y}}{s_{x}}(x-\bar{x})
$$

we get the predicted response

$$
\hat{y}=-0.033+0.904 \cdot x
$$

Estimated σ^{2}

$$
s^{2}=\frac{n-1}{n-2} s_{y}^{2}\left(1-r^{2}\right)=0.05
$$

(b) Simple linear regression model

$$
X=\beta_{0}+\beta_{1} y+\epsilon, \quad \epsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)
$$

Fitting a straight line using

$$
x-\bar{x}=r \cdot \frac{s_{x}}{s_{y}}(y-\bar{y})
$$

we get the predicted response

$$
\hat{x}=0.033+1.055 \cdot y
$$

Estimated σ^{2}

$$
s^{2}=\frac{n-1}{n-2} s_{x}^{2}\left(1-r^{2}\right)=0.06
$$

(c) First fitted line

$$
y=-0.033+0.904 \cdot x
$$

is different from the second

$$
y=-0.031+0.948 \cdot x
$$

Problem 14.4

Two consecutive grades

```
X = the high school GPA (grade point average),
```

$Y=$ the freshman GPA.
Allow two different intercepts for females and males

$$
\begin{aligned}
Y_{F} & =\beta_{F}+\beta_{1} x+\epsilon, \quad \epsilon \sim \mathrm{N}\left(0, \sigma^{2}\right) \\
Y_{M} & =\beta_{M}+\beta_{1} x+\epsilon, \quad \epsilon \sim \mathrm{N}\left(0, \sigma^{2}\right) .
\end{aligned}
$$

Using an extra explanatory variable f which equal 1 for females and 0 for males, we rewrite this model in the form of a multiple regression

$$
Y=f \beta_{F}+(1-f) \beta_{F}+\beta_{1} x+\epsilon=\beta_{0}+\beta_{1} x+\beta_{2} f+\epsilon
$$

where

$$
\beta_{0}=\beta_{M}, \quad \beta_{2}=\beta_{F}-\beta_{M} .
$$

Here $p=3$ and the design matrix is

$$
\boldsymbol{X}=\left(\begin{array}{ccc}
1 & x_{1} & f_{1} \\
\vdots & \vdots & \vdots \\
1 & x_{n} & f_{n}
\end{array}\right)
$$

After $\beta_{0}, \beta_{1}, \beta_{2}$ are estimated, we compute

$$
\beta_{M}=\beta_{0}, \quad \beta_{F}=\beta_{0}+\beta_{2} .
$$

A null hypothesis of interest $\beta_{2}=0$.

Problem 14.14

Simple linear regression model

$$
Y=\beta_{0}+\beta_{1} x+\epsilon, \quad \epsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)
$$

Using n pairs of $\left(x_{i}, y_{i}\right)$ we fit a regression line by

$$
y=b_{0}+b_{1} x, \quad \operatorname{Var}\left(b_{0}\right)=\frac{\sigma^{2} \overline{x^{2}}}{(n-1) s_{x}^{2}}, \quad \operatorname{Var}\left(b_{1}\right)=\frac{\sigma^{2}}{(n-1) s_{x}^{2}}, \quad \operatorname{Cov}\left(b_{0}, b_{1}\right)=-\frac{\sigma^{2} \bar{x}}{(n-1) s_{x}^{2}} .
$$

For a given $x=x_{0}$, we wish to predict the value of a new observation

$$
Y_{0}=\beta_{0}+\beta_{1} x_{0}+\epsilon
$$

by

$$
\hat{y}_{0}=b_{0}+b_{1} x_{0} .
$$

(a) The predicted value \hat{y}_{0} and actual observation Y_{0} are independent random variables, therefore

$$
\operatorname{Var}\left(Y_{0}-\hat{y}_{0}\right)=\operatorname{Var}\left(Y_{0}\right)+\operatorname{Var}\left(\hat{y}_{0}\right)=\sigma^{2}+\operatorname{Var}\left(b_{0}+b_{1} x_{0}\right)=\sigma^{2} C_{n}^{2},
$$

where

$$
C_{n}^{2}=1+\frac{\operatorname{Var}\left(b_{0}\right)+\operatorname{Var}\left(b_{1}\right) x_{0}^{2}-2 x_{0} \operatorname{Cov}\left(b_{0}, b_{1}\right)}{\sigma^{2}}=1+\frac{\overline{x^{2}}+x_{0}^{2}-2 \bar{x} x_{0}}{(n-1) s_{x}^{2}}=1+\frac{\overline{x^{2}}-\bar{x}^{2}+\left(x_{0}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}=1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}} .
$$

(b) 95% prediction interval for the new observation Y_{0} is obtained from

$$
\frac{Y_{0}-\hat{y}_{0}}{s C_{n}} \sim \mathrm{t}_{n-2}
$$

Since

$$
0.95=\mathrm{P}\left(\left|Y_{0}-\hat{y}_{0}\right| \leq t_{n-2}(0.025) \cdot s C_{n}\right)=\mathrm{P}\left(Y_{0} \in \hat{y}_{0} \pm t_{n-2}(0.025) \cdot s C_{n}\right)
$$

we conclude that a 95% prediction interval for the new observation Y_{0} is given by

$$
b_{0}+b_{1} x_{0} \pm t_{n-2}(0.025) \cdot s \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}} .
$$

The further x_{0} is from \bar{x}, the more uncertain becomes the prediction.

Problem 14.23

Data collected for
$x=$ midterm grade,
$y=$ final grade ,
gave

$$
r=0.5, \quad \bar{x}=\bar{y}=75, \quad s_{x}=s_{y}=10 .
$$

(a) Given $x=95$, we predict the final score by

$$
\hat{y}=75+0.5(95-75)=85 .
$$

Regression to mediocracy.
(b) Given $y=85$ and we do not know the midterm score, we predict the midterm score by

$$
\hat{x}=75+0.5(85-75)=80
$$

Problem 14.33

Let

$$
Y=X+\beta Z
$$

where $X \in \mathrm{~N}(0,1)$ and $Z \in \mathrm{~N}(0,1)$ are independent.
(a) Find the correlation coefficient ρ for (X, Y). Since $\mathrm{E} X=0$, we have

$$
\operatorname{Cov}(X, Y)=\mathrm{E}(X Y)=\mathrm{E}\left(X^{2}+\beta X Z\right)=1, \quad \operatorname{Var} Y=\operatorname{Var} X+\operatorname{Var} Z=1+\beta^{2}
$$

and we see that the correlation coefficient is always positive

$$
\rho=\frac{1}{\sqrt{1+\beta^{2}}}
$$

(b) Use (a) to generate five samples

$$
\left(x_{1}, y_{1}\right), \ldots,\left(x_{20}, y_{20}\right)
$$

with different

$$
\rho=-0.9, \quad-0.5, \quad 0, \quad 0.5, \quad 0.9
$$

and compute the sample correlation coefficients.
From $\rho=\frac{1}{\sqrt{1+\beta^{2}}}$, we get $\beta=\sqrt{\rho^{-2}-1}$ so that

$$
\rho=0.5 \Rightarrow \beta=1.73, \quad \rho=0.9 \Rightarrow \beta=0.48
$$

How to generate a sample with $\rho=-0.9$ using Matlab:

$$
\begin{aligned}
& \mathrm{X}=\operatorname{randn}(20,1) ; \\
& \mathrm{Z}=\operatorname{randn}(20,1) ; \\
& \mathrm{Y}=-\mathrm{X}+0.48^{*} \mathrm{Z} ; \\
& \mathrm{r}=\operatorname{corrcoeff}(\mathrm{X}, \mathrm{Y})
\end{aligned}
$$

How to generate a sample with $\rho=0$ using Matlab:

$$
\begin{aligned}
& \mathrm{X}=\operatorname{randn}(20,1) ; \\
& \mathrm{Y}=\operatorname{randn}(20,1) ; \\
& \mathrm{r}=\operatorname{corrcoeff}(\mathrm{X}, \mathrm{Y})
\end{aligned}
$$

Simulation results

$$
\begin{array}{c|ccccc}
\rho & -0.9 & -0.5 & 0 & 0.5 & 0.9 \\
\hline r & -0.92 & -0.45 & -0.20 & 0.32 & 0.92
\end{array}
$$

Problem 14.42

Data

$$
\begin{array}{c|cccccc}
\text { velocity of a car } x & 20.5 & 20.5 & 30.5 & 40.5 & 48.8 & 57.8 \\
\hline \text { stopping distance } y & 15.4 & 13.3 & 33.9 & 73.1 & 113.0 & 142.6
\end{array}
$$

Matlab commands (x and y are columns)
$[\mathrm{b}$, bint,res,rint,stats]$]=\operatorname{regress}(\mathrm{y},[\operatorname{ones}(6,1), \mathrm{x}])$
$[b, b i n t, r e s, r i n t, s t a t s]=\operatorname{regress}(\operatorname{sqrt}(y),[\operatorname{ones}(6,1), \mathrm{x}])$
give two sets of residuals - see the plot. Two simple linear regression models

$$
\begin{array}{cc}
y=-62.05+3.49 \cdot x, & r^{2}=0.984 \\
\sqrt{y}=-0.88+0.2 \cdot x, & r^{2}=0.993
\end{array}
$$

Can you suggest any physical reason that explains why the second model is better?

