
Serik Sagitov, Chalmers and GU, March 2, 2018

Solutions chapter 14

Problem 14.2

Ten pairs

x 0.34 1.38 -0.65 0.68 1.40 -0.88 -0.30 -1.18 0.50 -1.75
y 0.27 1.34 -0.53 0.35 1.28 -0.98 -0.72 -0.81 0.64 -1.59

with
x̄ = −0.046, ȳ = −0.075, sx = 1.076, sy = 0.996, r = 0.98.

Draw a scatter plot using

x -1.75 -1.18 -0.88 -0.65 -0.30 0.34 0.50 0.68 1.38 1.40
y -1.59 -0.81 -0.98 -0.53 -0.72 0.27 0.64 0.35 1.34 1.28

(a) Simple linear regression model

Y = β0 + β1x+ ε, ε ∼ N(0, σ2).

Fitting a straight line using
y − ȳ = r · sy

sx
(x− x̄)

we get the predicted response
ŷ = −0.033 + 0.904 · x.

Estimated σ2

s2 = n−1
n−2

s2
y(1− r2) = 0.05.

(b) Simple linear regression model

X = β0 + β1y + ε, ε ∼ N(0, σ2).

Fitting a straight line using
x− x̄ = r · sx

sy
(y − ȳ)

we get the predicted response
x̂ = 0.033 + 1.055 · y.

Estimated σ2

s2 = n−1
n−2

s2
x(1− r2) = 0.06.

(c) First fitted line
y = −0.033 + 0.904 · x

is different from the second
y = −0.031 + 0.948 · x.
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Problem 14.4

Two consecutive grades

X = the high school GPA (grade point average),
Y = the freshman GPA.

Allow two different intercepts for females and males

YF = βF + β1x+ ε, ε ∼ N(0, σ2),

YM = βM + β1x+ ε, ε ∼ N(0, σ2).

Using an extra explanatory variable f which equal 1 for females and 0 for males, we rewrite this model
in the form of a multiple regression

Y = fβF + (1− f)βF + β1x+ ε = β0 + β1x+ β2f + ε,

where
β0 = βM , β2 = βF − βM .

Here p = 3 and the design matrix is

X =

 1 x1 f1
...

...
...

1 xn fn

 .

After β0, β1, β2 are estimated, we compute

βM = β0, βF = β0 + β2.

A null hypothesis of interest β2 = 0.

Problem 14.14

Simple linear regression model

Y = β0 + β1x+ ε, ε ∼ N(0, σ2).

Using n pairs of (xi, yi) we fit a regression line by

y = b0 + b1x, Var(b0) = σ2x2

(n−1)s2x
, Var(b1) = σ2

(n−1)s2x
, Cov(b0, b1) = − σ2x̄

(n−1)s2x
.

For a given x = x0, we wish to predict the value of a new observation

Y0 = β0 + β1x0 + ε

by
ŷ0 = b0 + b1x0.

(a) The predicted value ŷ0 and actual observation Y0 are independent random variables, therefore

Var(Y0 − ŷ0) = Var(Y0) + Var(ŷ0) = σ2 + Var(b0 + b1x0) = σ2C2
n,

2



where

C2
n = 1 +

Var(b0)+Var(b1)x20−2x0Cov(b0,b1)

σ2 = 1 +
x2+x20−2x̄x0

(n−1)s2x
= 1 + x2−x̄2+(x0−x̄)2

(n−1)s2x
= 1 + 1

n
+ (x0−x̄)2

(n−1)s2x
.

(b) 95% prediction interval for the new observation Y0 is obtained from

Y0−ŷ0
sCn

∼ tn−2.

Since
0.95 = P(|Y0 − ŷ0|≤ tn−2(0.025) · sCn) = P(Y0 ∈ ŷ0 ± tn−2(0.025) · sCn),

we conclude that a 95% prediction interval for the new observation Y0 is given by

b0 + b1x0 ± tn−2(0.025) · s
√

1 + 1
n

+ (x0−x̄)2

(n−1)s2x
.

The further x0 is from x̄, the more uncertain becomes the prediction.

Problem 14.23

Data collected for

x = midterm grade,
y = final grade,

gave
r = 0.5, x̄ = ȳ = 75, sx = sy = 10.

(a) Given x = 95, we predict the final score by

ŷ = 75 + 0.5(95− 75) = 85.

Regression to mediocracy.

(b) Given y = 85 and we do not know the midterm score, we predict the midterm score by

x̂ = 75 + 0.5(85− 75) = 80.

Problem 14.33

Let
Y = X + βZ,

where X ∈ N(0, 1) and Z ∈ N(0, 1) are independent.

(a) Find the correlation coefficient ρ for (X, Y ). Since EX = 0, we have

Cov(X, Y ) = E(XY ) = E(X2 + βXZ) = 1, VarY = VarX + VarZ = 1 + β2,

and we see that the correlation coefficient is always positive

ρ = 1√
1+β2

.
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(b) Use (a) to generate five samples

(x1, y1), . . . , (x20, y20)

with different
ρ = −0.9, −0.5, 0, 0.5, 0.9,

and compute the sample correlation coefficients.
From ρ = 1√

1+β2
, we get β =

√
ρ−2 − 1 so that

ρ = 0.5⇒ β = 1.73, ρ = 0.9⇒ β = 0.48.

How to generate a sample with ρ = −0.9 using Matlab:

X=randn(20,1);
Z=randn(20,1);
Y=-X+0.48*Z;
r=corrcoeff(X,Y)

How to generate a sample with ρ = 0 using Matlab:

X=randn(20,1);
Y=randn(20,1);
r=corrcoeff(X,Y)

Simulation results

ρ -0.9 -0.5 0 0.5 0.9
r -0.92 -0.45 -0.20 0.32 0.92

Problem 14.42

Data

velocity of a car x 20.5 20.5 30.5 40.5 48.8 57.8
stopping distance y 15.4 13.3 33.9 73.1 113.0 142.6

Matlab commands (x and y are columns)

[b,bint,res,rint,stats]=regress(y,[ones(6,1),x])

[b,bint,res,rint,stats]=regress(sqrt(y),[ones(6,1),x])

give two sets of residuals - see the plot. Two simple linear regression models

y = −62.05 + 3.49 · x, r2 = 0.984,
√
y = −0.88 + 0.2 · x, r2 = 0.993.

Can you suggest any physical reason that explains why the second model is better?
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