Serik Sagitov, Chalmers and GU, January 19, 2018

Solutions chapter 7

Problem 7.1

We consider sampling with replacement. For an answer in the case of sampling without replacement consult the book page A36.

Population distribution

Values	1	2	4	8
Probab.	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

Population mean and variance: $\mu=3.4, \sigma^{2}=6.24$. The list of \bar{X} values and their frequencies for $n=2$ observations taken with replacement:

	1	2	4	8	Total prob.
1	$1.0(1 / 25)$	$1.5(2 / 25)$	$2.5(1 / 25)$	$4.5(1 / 25)$	$1 / 5$
2	$1.5(2 / 25)$	$2.0(4 / 25)$	$3.0(2 / 25)$	$5.0(2 / 25)$	$2 / 5$
4	$2.5(1 / 25)$	$3.0(2 / 25)$	$4.0(1 / 25)$	$6.0(1 / 25)$	$1 / 5$
8	$4.5(1 / 25)$	$5.0(2 / 25)$	$6.0(1 / 25)$	$8.0(1 / 25)$	$1 / 5$
Tot. prob.	$1 / 5$	$2 / 5$	$1 / 5$	$1 / 5$	1

The sampling distribution of \bar{X} :

$$
\begin{array}{c|cccccccccc}
\text { Values } & 1 & 1.5 & 2 & 2.5 & 3 & 4 & 4.5 & 5 & 6 & 8 \\
\hline \text { Probab. } & \frac{1}{25} & \frac{4}{25} & \frac{4}{25} & \frac{2}{25} & \frac{4}{25} & \frac{1}{25} & \frac{2}{25} & \frac{4}{25} & \frac{2}{25} & \frac{1}{25} \\
\mathrm{E}(\bar{X})=3.4=\mu, & \mathrm{E}\left(\bar{X}^{2}\right)=14.68, & \operatorname{Var}(\bar{X})=3.12=\frac{\sigma^{2}}{n} .
\end{array}
$$

Problem 7.9

Dichotomous data

$$
n=1500, \quad \hat{p}=0.55, \quad 1-\hat{p}=0.45
$$

Population margin of victory

$$
v=p-(1-p)=2 p-1
$$

Estimated margin of victory

$$
\hat{v}=\hat{p}-(1-\hat{p})=2 \hat{p}-1=0.1
$$

(a) Standard error of \hat{v}

$$
s_{\hat{v}}=2 s_{\hat{p}}=0.026,
$$

where

$$
s_{\hat{p}}^{2}=\frac{\hat{p}(1-\hat{p})}{n-1}=\frac{0.55 \times 0.45}{1499}=0.013^{2}
$$

(b) Approximate $95 \% \mathrm{CI}$ for v is

$$
\hat{v} \pm 1.96 s_{\hat{v}}=0.10 \pm 0.05
$$

Problem 7.19

Normal approximation: $\frac{\bar{X}-\mu}{s_{\bar{X}}}$ is asymptotically $\mathrm{N}(0,1)$-distributed. Approximate 95% one-sided CI for μ is obtained from

$$
0.95=\mathrm{P}\left(\frac{\bar{X}-\mu}{s_{\bar{X}}}<1.645\right)=\mathrm{P}\left(\bar{X}-1.645 s_{\bar{X}}<\mu<\infty\right) .
$$

Problem 7.35

Simple random sample:

$$
N=2000, \quad n=25, \quad \sum X_{i}=2451, \quad \sum X_{i}^{2}=243505 .
$$

(a) Unbiased estimate of μ is

$$
\bar{X}=\frac{2451}{25}=98.04
$$

(b) Unbiased estimate of σ^{2} is

$$
\frac{N-1}{N} s^{2}=\frac{1999}{2000} 133.71=133.64
$$

where

$$
s^{2}=\frac{n}{n-1}\left(\overline{X^{2}}-\bar{X}^{2}\right)=\frac{25}{24}\left(\frac{243505}{25}-98.04^{2}\right)=133.71 .
$$

Unbiased estimate of $\operatorname{Var}(\bar{X})$ is

$$
s_{\bar{X}}^{2}=\frac{s^{2}}{n}\left(1-\frac{n}{N}\right)=5.28 .
$$

(b) Approximate $95 \% \mathrm{CI}$ for μ is

$$
\bar{X} \pm 1.96 s_{\bar{X}}=98.04 \pm 1.96 \sqrt{5.28}=98.04 \pm 4.50
$$

Approximate $95 \% \mathrm{CI}$ for the total $N \mu$ is

$$
N \bar{X} \pm 1.96 N s_{\bar{X}}=196080 \pm 9008
$$

Problem 7.36

Simple random sample. Take \bar{X}^{2} as a point estimate of μ^{2}. (Note that this is a method of moments estimate.) Compute the bias of this estimate.

Solution. The bias is

$$
\mathrm{E}\left(\bar{X}^{2}\right)-\mu^{2}=\mathrm{E}\left(\bar{X}^{2}\right)-(\mathrm{E} \bar{X})^{2}=\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}\left(1-\frac{n-1}{N-1}\right) .
$$

For large n, the bias is small.

Problem 7.28

Randomized response method. Estimate the proportion q of illegal drug users among prison inmates. We are interested in the population as a whole not in punishing particular individuals.

Randomly chosen n inmates responded to a randomized statement:
"I use heroin" (with probability 5/6)
"I do not use heroin" (with probability $1 / 6$).
Consider

$$
X=\text { number of "yes" responses for } n \text { inmates, } \quad R=X / n .
$$

Then X has $\operatorname{Bin}(n, p)$ distribution, where

$$
p=\mathrm{P}(\mathrm{a} \text { "yes" answer })=\frac{5}{6} \cdot q+\frac{1}{6} \cdot(1-q)=\frac{1+4 q}{6} .
$$

Method of moments estimate \tilde{q} for the population proportion q is found from

$$
\mathrm{E}(X)=n p, \quad \mathrm{E}(R)=\frac{1+4 q}{6} .
$$

Setting

$$
R=\frac{1+4 \tilde{q}}{6}
$$

we find

$$
\tilde{q}=\frac{6 R-1}{4} .
$$

The estimate is unbiased

$$
\mathrm{E}(\tilde{q})=\frac{6 p-1}{4}=q .
$$

Its variance equals

$$
\operatorname{Var}(\tilde{q})=\frac{9}{4} \cdot \operatorname{Var}(R)=\frac{9}{4} \cdot \frac{p(1-p)}{n}=\frac{(1+4 q)(5-4 q)}{16 n} .
$$

Take for example $n=40, X=8$. Then $R=0.2$ and $\tilde{q}=\frac{6 R-1}{4}=0.05$. The estimated standard error

$$
s_{\tilde{q}}=\sqrt{\frac{(1+4 \tilde{q})(5-4 \tilde{q})}{16 n}}=0.095 .
$$

The estimate is unreliable. We have to increase the sample size.

Problem 7.53

μ_{l}	5.4	16.3	24.3	34.5	42.1	50.1	63.8
W_{l}	0.20	0.23	0.19	0.17	0.08	0.06	0.07
σ_{l}	8.3	13.3	15.1	19.8	24.5	26.0	35.2
Optimal allocation $n \frac{W_{l} \sigma_{l}}{\bar{\sigma}_{l}}$	10	18	17	19	12	9	15
Proportional allocation $n W_{l}$	20	23	19	17	8	6	7

(a) $N=2010, L=7, n=100, \bar{\sigma}=17.04, \overline{\sigma^{2}}=347.40, \sigma^{2}=347.40+275.33=622.73$.
(b) $\operatorname{Var}\left(\bar{X}_{\text {so }}\right)=\frac{\bar{\sigma}^{2}}{n}=2.90, \operatorname{Var}\left(\bar{X}_{s p}\right)=\frac{\overline{\sigma^{2}}}{n}=3.44, \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}=6.21$.
(c) $\mu=26.49, \sigma=24.95$.
(d) If $n_{1}=\ldots=n_{7}=10$ and $n=70$, then $\operatorname{Var}\left(\bar{X}_{s}\right)=4.45$. Find sample size x such that $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{x}=4.45$. The solution gives the sample size of 140 .
(e) If $n=70$, then $\operatorname{Var}\left(\bar{X}_{s p}\right)=4.92$. Find sample size x such that $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{x}=4.92$. The solution gives the sample size of 127 .

Problem 7.57

Stratified population with

$$
N=5, \quad L=2, \quad W_{1}=0.6, \quad W_{2}=0.4, \quad \mu_{1}=1.67, \quad \mu_{2}=6, \quad \sigma_{1}^{2}=0.21, \quad \sigma_{2}^{2}=4
$$

Given $n_{1}=n_{2}=1$ and $n=2$, the sampling distribution of the stratified sample mean $\bar{X}_{s}=$ $0.6 X_{1}+0.4 X_{2}$ is

	1	2	Total prob.
4	$2.2(1 / 6)$	$2.8(2 / 6)$	$1 / 2$
8	$3.8(1 / 6)$	$4.4(2 / 6)$	$1 / 2$
Tot. prob.	$1 / 3$	$2 / 3$	1

$$
\mathrm{E}\left(\bar{X}_{s}\right)=3.4=\mu, \quad \mathrm{E}\left(\bar{X}_{s}\right)^{2}=12.28, \quad \operatorname{Var}\left(\bar{X}_{s}\right)=0.72=0.36 \sigma_{1}^{2}+0.16 \sigma_{2}^{2}
$$

