Solutions chapter 7

Problem 7.1

We consider sampling with replacement. For an answer in the case of sampling without replacement consult the book page A36.

Population distribution

Values	1	2	4	8
Probab.	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

Population mean and variance: $\mu = 3.4$, $\sigma^2 = 6.24$. The list of \bar{X} values and their frequencies for n = 2 observations taken with replacement:

	1	2	4	8	Total prob.
1	1.0(1/25)	1.5(2/25)	2.5(1/25)	4.5(1/25)	1/5
2	1.5(2/25)	2.0 (4/25)	3.0(2/25)	5.0(2/25)	2/5
4	2.5(1/25)	3.0(2/25)	4.0(1/25)	6.0(1/25)	1/5
8	4.5(1/25)	5.0(2/25)	6.0(1/25)	8.0(1/25)	1/5
Tot. prob.	1/5	2/5	1/5	1/5	1

The sampling distribution of \bar{X} :

Problem 7.9

Dichotomous data

 $n = 1500, \quad \hat{p} = 0.55, \quad 1 - \hat{p} = 0.45.$

Population margin of victory

$$v = p - (1 - p) = 2p - 1.$$

Estimated margin of victory

$$\hat{v} = \hat{p} - (1 - \hat{p}) = 2\hat{p} - 1 = 0.1.$$

(a) Standard error of \hat{v}

$$s_{\hat{v}} = 2s_{\hat{p}} = 0.026,$$

where

$$s_{\hat{p}}^2 = \frac{\hat{p}(1-\hat{p})}{n-1} = \frac{0.55 \times 0.45}{1499} = 0.013^2$$

(b) Approximate 95% CI for v is

$$\hat{v} \pm 1.96 s_{\hat{v}} = 0.10 \pm 0.05.$$

Problem 7.19

Normal approximation: $\frac{\bar{X}-\mu}{s_{\bar{X}}}$ is asymptotically N(0,1)-distributed. Approximate 95% one-sided CI for μ is obtained from

$$0.95 = P(\frac{\bar{X} - \mu}{s_{\bar{X}}} < 1.645) = P(\bar{X} - 1.645s_{\bar{X}} < \mu < \infty)$$

Problem 7.35

Simple random sample:

$$N = 2000, \quad n = 25, \quad \sum X_i = 2451, \quad \sum X_i^2 = 243505.$$

(a) Unbiased estimate of μ is

$$\bar{X} = \frac{2451}{25} = 98.04.$$

(b) Unbiased estimate of σ^2 is

$$\frac{N-1}{N}s^2 = \frac{1999}{2000}133.71 = 133.64,$$

where

$$s^{2} = \frac{n}{n-1}(\overline{X^{2}} - \overline{X}^{2}) = \frac{25}{24}(\frac{243505}{25} - 98.04^{2}) = 133.71.$$

Unbiased estimate of $\operatorname{Var}(\bar{X})$ is

$$s_{\bar{X}}^2 = \frac{s^2}{n}(1 - \frac{n}{N}) = 5.28$$

(b) Approximate 95% CI for μ is

$$\bar{X} \pm 1.96s_{\bar{X}} = 98.04 \pm 1.96\sqrt{5.28} = 98.04 \pm 4.50.$$

Approximate 95% CI for the total $N\mu$ is

$$N\bar{X} \pm 1.96Ns_{\bar{X}} = 196080 \pm 9008.$$

Problem 7.36

Simple random sample. Take \bar{X}^2 as a point estimate of μ^2 . (Note that this is a method of moments estimate.) Compute the bias of this estimate.

Solution. The bias is

$$E(\bar{X}^2) - \mu^2 = E(\bar{X}^2) - (E\bar{X})^2 = Var(\bar{X}) = \frac{\sigma^2}{n}(1 - \frac{n-1}{N-1}).$$

For large n, the bias is small.

Problem 7.28

Randomized response method. Estimate the proportion q of illegal drug users among prison inmates. We are interested in the population as a whole not in punishing particular individuals.

Randomly chosen n inmates responded to a randomized statement:

```
"I use heroin" (with probability 5/6)
```

"I do not use heroin" (with probability 1/6).

Consider

$$X =$$
 number of "yes" responses for n inmates, $R = X/n$.

Then X has Bin (n, p) distribution, where

$$p = P(a \text{ "yes" answer}) = \frac{5}{6} \cdot q + \frac{1}{6} \cdot (1-q) = \frac{1+4q}{6}.$$

Method of moments estimate \tilde{q} for the population proportion q is found from

$$E(X) = np, \quad E(R) = \frac{1+4q}{6}.$$

Setting

$$R = \frac{1+4\tilde{q}}{6},$$

we find

$$\tilde{q} = \frac{6R - 1}{4}.$$

The estimate is unbiased

$$\mathcal{E}(\tilde{q}) = \frac{6p-1}{4} = q.$$

Its variance equals

$$\operatorname{Var}(\tilde{q}) = \frac{9}{4} \cdot \operatorname{Var}(R) = \frac{9}{4} \cdot \frac{p(1-p)}{n} = \frac{(1+4q)(5-4q)}{16n}$$

Take for example n = 40, X = 8. Then R = 0.2 and $\tilde{q} = \frac{6R-1}{4} = 0.05$. The estimated standard error $\sqrt{(1 + 4\tilde{a})(5 - 4\tilde{a})}$

$$s_{\tilde{q}} = \sqrt{\frac{(1+4\tilde{q})(5-4\tilde{q})}{16n}} = 0.095.$$

The estimate is unreliable. We have to increase the sample size.

Problem 7.53

μ_l	5.4	16.3	24.3	34.5	42.1	50.1	63.8
W_l	0.20	0.23	0.19	0.17	0.08	0.06	0.07
σ_l	8.3	13.3	15.1	19.8	24.5	26.0	35.2
Optimal allocation $n \frac{W_l \sigma_l}{\bar{\sigma}_l}$	10	18	17	19	12	9	15
Proportional allocation nW_l		23	19	17	8	6	7

- (a) $N = 2010, L = 7, n = 100, \bar{\sigma} = 17.04, , \overline{\sigma^2} = 347.40, \sigma^2 = 347.40 + 275.33 = 622.73.$
- (b) $\operatorname{Var}(\bar{X}_{so}) = \frac{\bar{\sigma}^2}{n} = 2.90, \operatorname{Var}(\bar{X}_{sp}) = \frac{\overline{\sigma^2}}{n} = 3.44, \operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n} = 6.21.$
- (c) $\mu = 26.49, \sigma = 24.95.$

(d) If $n_1 = \ldots = n_7 = 10$ and n = 70, then $\operatorname{Var}(\bar{X}_s) = 4.45$. Find sample size x such that $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{x} = 4.45$. The solution gives the sample size of 140.

(e) If n = 70, then $\operatorname{Var}(\bar{X}_{sp}) = 4.92$. Find sample size x such that $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{x} = 4.92$. The solution gives the sample size of 127.

Problem 7.57

Stratified population with

N = 5, L = 2, $W_1 = 0.6$, $W_2 = 0.4$, $\mu_1 = 1.67$, $\mu_2 = 6$, $\sigma_1^2 = 0.21$, $\sigma_2^2 = 4$.

Given $n_1 = n_2 = 1$ and n = 2, the sampling distribution of the stratified sample mean $\bar{X}_s = 0.6X_1 + 0.4X_2$ is

	1	2	Total prob.
4	$\begin{array}{c} 2.2 \ (1/6) \\ 3.8 \ (1/6) \end{array}$	2.8(2/6)	1/2
8	3.8(1/6)	4.4(2/6)	1/2
Tot. prob.	1/3	2/3	1

 $E(\bar{X}_s) = 3.4 = \mu, \quad E(\bar{X}_s)^2 = 12.28, \quad Var(\bar{X}_s) = 0.72 = 0.36\sigma_1^2 + 0.16\sigma_2^2.$