Serik Sagitov, Chalmers and GU, February 6, 2018

Solutions chapter 9

Problem 9.3

Data $X \sim \operatorname{Bin}(100, p)$. A pair of alternatives

$$
H_{0}: p=1 / 2, \quad H_{1}: p \neq 1 / 2
$$

Consider the test that rejects H_{0} for $|X-50|>10$. The z-score

$$
Z=\frac{X-100 p}{10 \sqrt{p(1-p)}}
$$

distribution is approximately $\mathrm{N}(0,1)$.
(a) The corresponding significance level is

$$
\alpha=\mathrm{P}_{H_{0}}(|X-50|>10)=\mathrm{P}_{H_{0}}(|Z|>2) \approx 2(1-\Phi(2))=2 \cdot 0.0228=0.046
$$

(b) The power of the test is a function of the parameter value p

$$
\begin{aligned}
\mathrm{Pw}(p) & =\mathrm{P}(|X-50|>10)=\mathrm{P}(X<40)+\mathrm{P}(X>60) \\
& =\mathrm{P}\left(Z<\frac{40-100 p}{10 \sqrt{p(1-p)}}\right)+\mathrm{P}\left(Z>\frac{60-100 p}{10 \sqrt{p(1-p)}}\right) \\
& =\Phi\left(\frac{4-10 p}{\sqrt{p(1-p)}}\right)+\Phi\left(\frac{10 p-6}{\sqrt{p(1-p)}}\right) .
\end{aligned}
$$

Putting $\delta=1 / 2-p$, we see that the power function

$$
\operatorname{Pw}(p)=\Phi\left(\frac{10 \delta-1}{\sqrt{1 / 4-\delta^{2}}}\right)+\Phi\left(-\frac{10 \delta+1}{\sqrt{1 / 4-\delta^{2}}}\right)
$$

is symmetric around $p=1 / 2$

p	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70
$\operatorname{Pw}(p)$	0.986	0.853	0.500	0.159	0.046	0.159	0.500	0.853	0.986

Problem 9.4

Two distributions for X

X-values	x_{1}	x_{2}	x_{3}	x_{4}
$\mathrm{P}\left(x \mid H_{0}\right)$	0.2	0.3	0.3	0.2
$\mathrm{P}\left(x \mid H_{1}\right)$	0.1	0.4	0.1	0.4
Likelihood ratio $\Lambda=\frac{\mathrm{P}\left(x \mid H_{0}\right)}{\mathrm{P}\left(x \mid H_{1}\right)}$	2	0.75	3	0.5

Data: one observation of X. Likelihood ratio test: reject for small values of Λ.
(a) See the bottom line of the table.
(b) The null distribution of Λ

X-values	x_{4}	x_{2}	x_{1}	x_{3}
Likelihood ratio Λ	0.5	0.75	2	3
$\mathrm{P}\left(x \mid H_{0}\right)$	0.2	0.3	0.2	0.3
Cumulative probab.	0.2	0.5	0.7	1

At $\alpha=0.2$ we reject H_{0} only if $\Lambda=0.5$ that is when $X=x_{4}$.
At $\alpha=0.5$ we reject H_{0} for $\Lambda \leq 0.75$ that is when $X=x_{4}$ or x_{2}.
(c) If the prior probabilities are $\mathrm{P}\left(H_{0}\right)=\mathrm{P}\left(H_{1}\right)=\frac{1}{2}$, which outcomes favour H_{0} ? By Bayes formula,

$$
\mathrm{P}\left(H_{0} \mid x\right)=\frac{\mathrm{P}\left(x \mid H_{0}\right) \mathrm{P}\left(H_{0}\right)}{\mathrm{P}\left(x \mid H_{0}\right) \mathrm{P}\left(H_{0}\right)+\mathrm{P}\left(x \mid H_{1}\right) \mathrm{P}\left(H_{1}\right)}=\frac{\mathrm{P}\left(x \mid H_{0}\right)}{\mathrm{P}\left(x \mid H_{0}\right)+\mathrm{P}\left(x \mid H_{1}\right)}, \quad x=x_{1}, x_{2}, x_{3}, x_{4} .
$$

Thus the posterior odds ratio equals the likelihood ratio

$$
\frac{\mathrm{P}\left(H_{0} \mid x\right)}{\mathrm{P}\left(H_{1} \mid x\right)}=\Lambda
$$

and we conclude that outcomes x_{1} and x_{3} favour H_{0} (assuming equal costs with these outcomes we have $\Lambda>1$).
(d) For the general prior

$$
\mathrm{P}\left(H_{0}\right)=\pi_{0}, \quad \mathrm{P}\left(H_{1}\right)=\pi_{1}=1-\pi_{0},
$$

we get

$$
\mathrm{P}\left(H_{i} \mid x\right)=\frac{\mathrm{P}\left(x \mid H_{i}\right) \pi_{i}}{\mathrm{P}\left(x \mid H_{0}\right) \pi_{0}+\mathrm{P}\left(x \mid H_{1}\right) \pi_{1}}, \quad \frac{\mathrm{P}\left(H_{0} \mid x\right)}{\mathrm{P}\left(H_{1} \mid x\right)}=\frac{\mathrm{P}\left(x \mid H_{0}\right) \pi_{0}}{\mathrm{P}\left(x \mid H_{1}\right) \pi_{1}}=\Lambda \cdot \frac{\pi_{0}}{\pi_{1}} .
$$

Assuming equal costs, the rejection rule is $\frac{\mathrm{P}\left(H_{0} \mid x\right)}{\mathrm{P}\left(H_{1} \mid x\right)}<1$, so that in terms of the likelihood ratio,

$$
\Lambda<\frac{\pi_{1}}{\pi_{0}}=\frac{1}{\pi_{0}}-1, \quad \pi_{0}<\frac{1}{1+\Lambda}
$$

If $x=x_{4}$, then $\Lambda=0.5$, and we reject H_{0}, provided $\pi_{0}<\frac{2}{3}$.
If $x=x_{2}$, then $\Lambda=0.75$, and we reject H_{0}, provided $\pi_{0}<\frac{4}{7}$.
If $x=x_{1}$, then $\Lambda=2$, and we reject H_{0}, provided $\pi_{0}<\frac{1}{3}$.
If $x=x_{3}$, then $\Lambda=3$, and we reject H_{0}, provided $\pi_{0}<\frac{1}{4}$.

Problem 9.7

Likelihood function

$$
L(\lambda)=e^{-\lambda n} \lambda^{x_{1}+\ldots+x_{n}} \prod_{i=1}^{n} \frac{1}{x_{i}!}
$$

Reject H_{0} for small

$$
\frac{L\left(\lambda_{0}\right)}{L\left(\lambda_{1}\right)}=e^{-n\left(\lambda_{0}-\lambda_{1}\right)}\left(\frac{\lambda_{0}}{\lambda_{1}}\right)^{x_{1}+\ldots+x_{n}} .
$$

If $\lambda_{1}>\lambda_{0}$, then we reject H_{0} for large

$$
Y=X_{1}+\ldots+X_{n}
$$

Test statistic Y has null distribution $\operatorname{Pois}\left(n \lambda_{0}\right)$.

Problem 9.9

IID sample from $\mathrm{N}(\mu, 100)$ of size $n=25$. Two simple hypotheses

$$
H_{0}: \mu=0, \quad H_{1}: \mu=1.5
$$

Test statistic and its exact sampling distribution

$$
\bar{X} \sim \mathrm{~N}(\mu, 4)
$$

Its null distribution is $\mathrm{N}\left(0,2^{2}\right)$.
(a) The rejection region at $\alpha=0.1$ is $\{\bar{X}>x\}$, where x is the solution of the equation

$$
0.1=\mathrm{P}_{H_{0}}(\bar{X}>x)=1-\Phi(x / 2)
$$

From the normal distribution table we find $x / 2=1.28$, so that $x=2.56$.
(b) The power of the test (a) is

$$
\mathrm{P}_{H_{1}}(\bar{X}>2.56)=\mathrm{P}_{H_{1}}\left(\frac{\bar{X}-1.5}{2}>0.53\right)=1-\Phi(0.53)=1-0.7019=0.298
$$

(c) For $\alpha=0.01$ the rejection region is $\{\bar{X}>4.66\}$, since $1-\Phi(2.33)=0.01$. The power of this test is

$$
\mathrm{P}_{H_{1}}(\bar{X}>4.66)=\mathrm{P}_{H_{1}}\left(\frac{\bar{X}-1.5}{2}>1.58\right)=1-\Phi(1.58)=1-0.9429=0.057
$$

Problem 9.14

For a single observation $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, where σ^{2} is known, test $H_{0}: \mu=0$ vs $H_{1}: \mu=1$. Prior probabilities

$$
\mathrm{P}\left(H_{0}\right)=\frac{2}{3}, \quad \mathrm{P}\left(H_{1}\right)=\frac{1}{3} .
$$

Choose H_{0} whenever $\mathrm{P}\left(H_{0} \mid x\right)>\mathrm{P}\left(H_{1} \mid x\right)$.
(a) Likelihood ratio

$$
\frac{f(x \mid 0)}{f(x \mid 1)}=\frac{e^{-\frac{x^{2}}{2 \sigma^{2}}}}{e^{-\frac{(x-1)^{2}}{2 \sigma^{2}}}}=e^{\frac{1}{2}-x} \sigma^{\sigma^{2}} .
$$

Choose H_{0} for x such that

$$
\frac{\mathrm{P}\left(H_{0} \mid x\right)}{\mathrm{P}\left(H_{1} \mid x\right)}=2 e^{\frac{1}{2}-x} \sigma^{2}-1, \quad x<\frac{1}{2}+\sigma^{2} \ln 2
$$

(b) In the long run, the proportion of the time H_{0} will be chosen is

$$
\mathrm{P}\left(X<\frac{1}{2}+\sigma^{2} \ln 2\right)=\frac{2}{3} \cdot \Phi\left(\sigma \ln 2+\frac{1}{2 \sigma}\right)+\frac{1}{3} \cdot \Phi\left(\sigma \ln 2-\frac{1}{2 \sigma}\right) .
$$

In particular, if $\sigma=1$, then this is 0.78 .

Problem 9.22

An exact 95% CI for σ^{2} if $n=15$ is

$$
\left(0.536 s^{2} ; 2.487 s^{2}\right)
$$

Reject $H_{0}: \sigma=1$

$$
\text { if } s^{2}>1.866 \text { or } s^{2}<0.402
$$

Problem 9.23

An IID sample from $\mathrm{N}\left(\mu, \sigma^{2}\right)$ gives a 99% CI for μ to be $(-2,3)$. Test

$$
H_{0}: \mu=-3 \quad \text { against } \quad H_{1}: \mu \neq-3
$$

at $\alpha=0.01$.
Using the CI-method of hypotheses testing we reject H_{0} in favour of the two-sided alternative, since the value $\mu=-3$ is not covered by the two-sided confidence interval $(-2,3)$.

Problem 9.24

Binomial data

$$
X \sim \operatorname{Bin}(n, p)
$$

Test

$$
H_{0}: p=0.5 \quad \text { against } \quad H_{1}: p \neq 0.5
$$

(a) Generalised likelihood ratio

$$
\Lambda=\frac{L\left(p_{0}\right)}{L(\hat{p})}=\frac{\binom{n}{x}\left(\frac{1}{2}\right)^{n}}{\binom{n}{x}\left(\frac{x}{n}\right)^{x}\left(\frac{n-x}{n}\right)^{n-x}}=\frac{\left(\frac{n}{2}\right)^{n}}{x^{x}(n-x)^{n-x}}
$$

(b) The generalised likelihood ratio test rejects H_{0} for small values of

$$
\ln \Lambda=n \ln (n / 2)-x \ln x-(n-x) \ln (n-x)
$$

or equivalently, for large values of

$$
x \ln x+(n-x) \ln (n-x) .
$$

or equivalently, for large values of

$$
l(y):=(n / 2+y) \ln (n / 2+y)+(n / 2-y) \ln (n / 2-y)
$$

where

$$
y=|x-n / 2| .
$$

The function $l(y)$ is monotonely increasing over $y \in[0, n / 2]$, since

$$
l^{\prime}(y)=\ln \frac{\frac{n}{2}+y}{\frac{n}{2}-y}>0
$$

We conclude that the test rejects for large values of $\left|X-\frac{n}{2}\right|$.
(c) Compute the significance level for the rejection region $\left|X-\frac{n}{2}\right|>k$:

$$
\alpha=\mathrm{P}_{H_{0}}\left(\left|X-\frac{n}{2}\right|>k\right)=2 \sum_{i<\frac{n}{2}-k}\binom{n}{i} 2^{-n} .
$$

(d) In particular, for $n=10$ and $k=2$ we get

$$
\alpha=2^{-9} \sum_{i=0}^{2}\binom{10}{i}=\frac{1+10+45}{512}=0.11 .
$$

(d) Using the normal approximation for $n=100$ and $k=10$, we find

$$
\alpha=\mathrm{P}_{H_{0}}\left(\left|X-n p_{0}\right|>k\right) \approx 2\left(1-\Phi\left(\frac{k}{\sqrt{n p_{0}\left(1-p_{0}\right)}}\right)\right)=2(1-\Phi(2))=0.046
$$

Problem 9.28

Observed test statistic $T=1.50$. Null distribution is a standard normal.
(a) Two-sided P-value $=0.134$.
(b) One-sided P -value $=0.067$.

Conclusion: choose H_{1} before you see your data.

Problem 9.33

California grave yards: data on two weeks around Passover, a Jewish holiday H_{0} : death cannot be postponed, H_{1} : death can be postponed until after an important date.
(a) Jewish data: $n=1919$ death dates
$Y=922$ deaths during the week before Passover,
$n-Y=997$ deaths during the week after Passover.
Under the binomial model $Y \sim \operatorname{Bin}(n, p)$, we would like to test

$$
H_{0}: p=0.5 \quad \text { against } \quad H_{1}: p<0.5 .
$$

We apply the large sample test for proportion. Observed test statistic

$$
Z=\frac{922-1919 \cdot 0.5}{\sqrt{1919} \cdot 0.5}=-1.712
$$

One-sided P-value of the test

$$
\Phi(-1.712)=1-\Phi(1.712)=1-0.9564=0.044
$$

Reject H_{0} in favor of one-sided H_{1} at the significance level 5%.
(b) To control for the seasonal effect the Chinese and Japanese data were studied

$$
n=852, \quad Y=418, \quad n-Y=434, \quad Z=-0.548
$$

One-sided P-value is 29%, showing no significant effect.
(c) Overeating might be a contributing factor.

Problem 9.35

Multinomial model

$$
\left(X_{1}, X_{2}, X_{3}\right) \sim \operatorname{Mn}\left(190, p_{1}, p_{2}, p_{3}\right)
$$

Composite null hypothesis (Hardy-Weinberg Equilibrium)

$$
H_{0}: p_{1}=(1-\theta)^{2}, p_{2}=2 \theta(1-\theta), p_{3}=\theta^{2} .
$$

Likelihood function and MLE

$$
L(\theta)=\binom{190}{10,68,112} 2^{68} \theta^{292}(1-\theta)^{88}, \quad \hat{\theta}=\frac{88}{380}=0.768 .
$$

Pearson's chi-square test:

cell	1	2	3	Total
observed	10	68	112	190
expected	10.23	67.71	112.07	190

Observed $X^{2}=0.0065$, df $=1, \mathrm{P}$-value $=2(1-\Phi(\sqrt{0.0065}))=0.94$.

Problem 9.36

US suicides in 1970. Check for the seasonal variation

Month	O_{j}	Days	E_{j}	$O_{j}-E_{j}$
Jan	1867	31	1994	-127
Feb	1789	28	1801	-12
Mar	1944	31	1994	-50
Apr	2094	30	1930	164
May	2097	31	1994	103
Jun	1981	30	1930	51
Jul	1887	31	1994	-107
Aug	2024	31	1994	30
Sep	1928	30	1930	-2
Oct	2032	31	1994	38
Nov	1978	30	1930	48
Dec	1859	31	1994	-135

Simple null hypothesis

$$
H_{0}: p_{1}=p_{3}=p_{5}=p_{7}=p_{8}=p_{10}=p_{12}=\frac{31}{365}, p_{2}=\frac{28}{365}, p_{4}=p_{6}=p_{9}=p_{11}=\frac{30}{365}
$$

The total number suicides $n=23480$, so that the expected counts are

$$
E_{j}=n p_{j}^{(0)}, \quad j=1, \ldots, 12
$$

The χ^{2}-test statistic

$$
X^{2}=\sum_{j} \frac{\left(O_{j}-E_{j}\right)^{2}}{E_{j}}=47.4
$$

Since df $=12-1=11$, and $\chi_{11}^{2}(0.005)=26.8$, we reject H_{0} of no seasonal variation. Merry Christmas!

Problem 9.43

Number of heads

$$
Y \sim \operatorname{Bin}(n, p), \quad n=17950
$$

(a) For $H_{0}: p=0.5$ the observed $Z=3.46$. Reject H_{0}.
(b) Pearson's chi-square test for the simple null hypothesis

$$
\begin{aligned}
& H_{0}: p_{0}=(0.5)^{5}=0.031, p_{1}=5 \cdot(0.5)^{5}=0.156, p_{2}=10 \cdot(0.5)^{5}=0.313, \\
& \quad p_{3}=10 \cdot(0.5)^{5}=0.313, p_{4}=5 \cdot(0.5)^{5}=0.156, p_{5}=(0.5)^{5}=0.031 . \\
& \text { number of heads }
\end{aligned} 0^{5}
$$

Observed $X^{2}=21.58, \mathrm{df}=5, \mathrm{P}$-value $=0.001$.
(c) Composite null hypothesis

$$
H_{0}: p_{i}=\binom{5}{i} p^{i}(1-p)^{5-i}, \quad i=0,1,2,3,4,5
$$

Pearson's chi-square test based on the MLE $\hat{p}=0.5129$

number of heads	0	1	2	3	4	5	Total
observed	100	524	1080	1126	655	105	3590
expected	98.4	518.3	1091.5	1149.3	605.1	127.4	3590

Observed $X^{2}=8.74, \mathrm{df}=4, \mathrm{P}$-value $=0.07$. Do not reject H_{0} at 5% level.

