Fourier-transform/continuous time
1-dim Fouriertansform of $f: \mathbb{R} \rightarrow \mathbb{C}$

$$
\hat{f}(\omega)=(F f)(\omega)=\int_{-\infty}^{+\infty} e^{-j \omega x} f(x) d x \quad\left(j^{2}=-1\right)
$$

1-dim inverse Fourier transform of $\widehat{f}: \mathbb{R} \rightarrow \mathbb{C}$

$$
f(x)=\left(F^{-1} \hat{f}\right)(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{j \omega x} \hat{f}(\omega) d \omega
$$

n-dim Founertransform of $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$

$$
\hat{f}\left(\omega_{1}, \ldots, \omega_{n}\right)=(f f)(\bar{\omega})=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-j\left(\omega_{i} x_{1}+\ldots+\omega_{n} x_{n}\right.} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

n-dim inverse Foumertwasform of $\hat{f}: \mathbb{R}^{n} \rightarrow \alpha$

$$
\left.f\left(x_{1}, \ldots, x_{n}\right)=\left(\bar{f}^{-1} f\right)\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{(2 \pi)^{\prime}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{j\left(\omega_{1} x_{1}+\ldots+\omega_{n} x_{n}\right.}\right) \hat{f}\left(\omega_{1}, \ldots, \omega_{n}\right) d \omega_{\ldots} . \operatorname{des}
$$

example for $f(x)=\frac{1}{\sqrt{2 \pi}} \sigma e^{-(x-\mu)^{2} / 2 v^{2}}$ we have
example for $f(x)=\left\{\begin{array}{ll}\lambda e^{-\lambda x} & \text { fri } x \geq 0 \\ 0 & \text { for }<x 0\end{array}\right.$ we have

$$
\hat{f}(\omega)=\int_{\infty}^{+\infty} \lambda e^{-(\lambda+j \omega) x} d x=\frac{\lambda}{\lambda+j \omega}
$$

1-dim
properties

$$
\begin{aligned}
& F\left(f\left(x-x_{0}\right)(\omega)=e^{-j \omega x_{0}}(F f)(\omega)\right. \\
& F\left(e^{j \omega_{0} x} f(x)(\omega)=(F f)\left(\omega-\omega_{0}\right)\right. \\
& F(f(-x))(\omega)=(f f)(-\omega) \\
& F\left(f^{\prime}(x)\right)(\omega)=j \omega(F f)(\omega)
\end{aligned}
$$

Fourier-tiansform/diccrete time
1- dim Fourier transform of $f: \mathbb{Z} \rightarrow G$

$$
\hat{f}(\omega)=\left(\mathbb{F}(f)(\omega)=\sum_{k=-\infty}^{+\infty} e^{-j \omega k} f f(k)\right.
$$

1 -dim inverse Fawner tmosform of $\hat{f}: \mathbb{R} \rightarrow \mathbb{C}$

$$
f(k)=\left(F^{-1} \hat{f}\right)(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j \omega k} \hat{f}(\omega) d \omega
$$

properties

$$
\begin{aligned}
& F\left(f\left(k_{-}-k_{0}\right)\right)(\omega)=e^{-j \omega k_{0}}(f f)(\omega) \\
& F\left(e^{j \omega_{0} k} f(\omega)\right)(\omega)=(F f)\left(\omega-\omega_{0}\right) \\
& F(f(-k))(\omega)=(F f)(-\omega)
\end{aligned}
$$

$$
\begin{gathered}
\mid \hat{F} \omega)=\frac{\sum_{k=0}^{+\infty}\left(\lambda e^{-j \omega}\right)^{k-1} \frac{1}{k!}}{\text { Taylor -exp }} e^{-\lambda}=e^{\lambda\left(e^{-j \omega}+1\right)} \\
\underset{\text { ©-function }}{(2)}
\end{gathered}
$$

* discrete Knacker δ-function $\delta: \mathbb{Z}-\{0,1\} \quad \delta(k)=\left\{\begin{array}{l}0 k \neq 0 \\ 1 k=0\end{array}\right.$
time
* continuous Dirac δ-function $\delta: \mathbb{R} \rightarrow\{0, \infty\}$ given by $\int_{-\infty}^{+\infty} f(x) \delta(x) d x=f(0)$ for $f: \mathbb{R} \rightarrow \mathbb{R}$ "smooth" and Usnishingat inthity
$\delta(x)$ is the distribution denvative of the Heaviside step-function $\theta(x)=\left\{\begin{array}{ll}0 & x<0 \\ 1 & x \geqslant 0\end{array}\right.$ as
$(F \delta)(0)=1$ (both in discrete and continuous time)

Convolution
continuous - time convolution between $f, g=\mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
(f * g)|x|=\int_{-\infty}^{+\infty} f(x-y) g(y) d y=\int_{-\infty}^{+\infty} g(x-y) f(y) d y=(g * f)(x)
$$

disuete time convolution between $f, g: \Pi \rightarrow \mathbb{R}$ is given by

$$
\begin{aligned}
& (f * g)(k)=\sum_{l=-\infty}^{+\infty} f(k-l) g(l)=\sum_{l=-\infty}^{+\infty} g(k-l) f(l)=(g * f)(L) \\
& F(f * g)(\omega)=(F f)(\omega)(F g)(\omega) \text { (both in dicurefend cuntinuoustione) }
\end{aligned}
$$

example for $f(x)=g(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\omega)^{2} / 2 \sigma^{2}}$ we have

$$
(f * g)(x)=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi} \sigma} \frac{1}{\frac{\sqrt{2 \pi \sigma} \sigma}{i n t e g n t e s} e^{-(\sqrt{2} g-x / \sqrt{2})^{2} / \sqrt{2}}} e^{-\frac{x^{2}}{4 \sigma^{2}}} d y=\frac{1}{\sqrt{2 \pi} \sqrt{2 \sigma} e^{-\frac{x^{2}}{2(\sqrt{2} \sigma)^{2}}}}
$$

when $\mu=0$ and in a similar foshoon
$(f * g)(x)=\frac{1}{\sqrt{2 \pi} \sqrt{2 \sigma}} e^{-\frac{(x-\mu)^{2}}{2(\sqrt{2} \sigma)^{2}}}$ for u in seven l
Axioms of Probability Theory
S is the sample specie of possible outcomes $S \in S$ of a radom experiment, subsets of S (Ecullection of atcumes) are called events, a probability measure $P(A)$ is defined for events $A \subseteq S$ according to the axioms $P(\phi)=0, P(S)=1$, $P(A) \geqslant 0$ and $P(A \cup B)=P(A)+P(B)$ for $A \cap B=\varnothing$

From these axioms several addition d roles follow:

$$
\begin{aligned}
& P\left(A^{c}\right)=P(\bar{A})=1-P(A) \\
& P(A) \leq P(B) \text { for } A \leq B \\
& P(A) \leq 1 \\
& P(A \cup B)=P|A|+P(B)-P(A \cup B) \\
& P\left(U_{i}, A_{i}\right)=\sum_{i=1} P\left(A_{i}\right) \text { when } H_{i} \cap A_{j}=\phi \text { for i\#j }
\end{aligned}
$$

Independence events A and B are independent if $P(A \cap B)=P(A) P(B)$
Conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
Law of total probability $P(B)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)$
whenever $A_{i} \cap A_{j}=4$ for $i \neq j$ and $\bigcup_{i} \hat{i}_{1} A_{i}=5$
Random varizble function $\mathbb{Z}: S=\mathbb{R} \bar{X}(S)$ function $(X, Y)=S \rightarrow \mathbb{R}^{2}(X(S), I(S))$

Cumulative Distribution Function（CDF）Ex）el

$$
\begin{aligned}
& F_{\bar{X}}(x)=P(\bar{X} \leq x)=P(S \in S: \bar{X}(5) \leq x) \\
& F_{\bar{X}, 工}(x, y)=P(\bar{X} \leq x, I \leq y)
\end{aligned}
$$

Properties $0 \leq F_{\underline{X}}(x) \leq 1, \quad F_{\bar{X}}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right)$ for $x_{1} \leq x_{2}$

$$
F_{X}(\infty)=1, \quad F_{X}(-\infty)=0, \quad P(a<X \leq b)=F_{X}(b)-F_{X}(a)
$$

$0 \leq F_{z, I}(x, y) \leq 1, F_{\text {位 }}(x, y)$ is increasing in each argument $F_{x_{1} \Phi_{1}}\left(x_{1}, \infty\right)=F_{\bar{x}}(x) \quad F_{x_{1}, z}(\infty, y)=F_{\underline{z}}(y)$

$$
P\left(x_{1}<区 \leq x_{2}, y_{1}<\Psi_{1}<y_{2}\right)=F_{X 工}-\left(x_{2}, y_{2}\right)-F_{\underline{I}}\left(x_{1}, y_{2}\right)-F_{\overline{1}}-\left(x_{2}, y_{1}\right)+F_{X X}\left(x_{1}, y_{1}\right)
$$

Indepadace X and I indepadent if $P\left(X \in A_{1}\right.$ I $\left.\in B\right)$ $=P(X \in A) P(z \in B)$ for all $A, B \leq \mathbb{R}$
X and I independent $\Leftrightarrow F_{X T}(x, y)=F_{\Delta}(x) F_{\tilde{T}}(y)$
＊Continuous random varald X or (\mathbb{X}, I) has uncourtably infinitely may possible values，probability density function PDF

$$
F_{\underline{x}}(x)=\frac{d}{d x} F_{\underline{x}}(x) \quad f_{\underline{x}}, \bar{I}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{\bar{X} \mathbb{I}}(x, y)
$$

Properties $f_{X}(x) \geq 0, \int_{-\infty}^{+\infty} f_{X}(x) d x=1, P(a<X \leq b)=\int_{X}^{b} f_{X}(x) d x$

$$
P(x \in A)=\int_{A} f_{X}(x) d x
$$

$$
f_{\bar{x}, 工}(x, y) \geq 0, \iint_{-\infty}^{+\infty} f_{z, e}(x, y) d x d y=1, P((\bar{x}, 2) \in A)=\iint_{A} f_{E_{i}}(x, y) d x d y
$$

$$
f_{X}(x)=b_{-\infty}^{+\infty} f_{\bar{X}}(x, y) d x, f_{q}(y)=\int f_{z}=(x, y) d x
$$

X and z^{∞} independent $\Leftrightarrow f_{X y}(x, y)=f_{X}(x) f_{=}(y)$
example Gaussian $N\left(\mu, \sigma^{2}\right) r v, f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma^{-} e^{-(x-\alpha)^{2} / 20^{2}}}$ example expunetizi nu．with parameter $\lambda \quad f_{\mathbb{E}}(x)=\left\{\begin{array}{cc}\lambda e^{-\lambda x} & x \geqslant 0 \\ 0 & x<0\end{array}\right.$ Exceople uniform distribution over $[a, b] f_{X}(x)= \begin{cases}\frac{1}{6-a} \text { for } a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}$ Expectation $E(X)=\int_{+\infty}^{+\infty} x f_{X}(x) d x \quad E(g(x))=\int_{-\infty}^{+\infty} g(x) f_{-\infty}(x) d x$

$$
E(g(\underline{X}, y))=\int_{-\infty}^{+\infty} \sum_{-\infty}^{+\infty} g(x, y) f_{\underline{\Sigma}, \underline{I}}(x, y) d x d y
$$

Conditional PDE of \mathbb{X} given that $I=y$

$$
\begin{aligned}
& f_{X I I}(x \mid y)=f_{\text {区iI江 }}(x, y) / f_{\underline{I}}(y) \\
& \left.P(X \in A \mid=y)=\int_{A} f \mathbb{X}|x| y\right) d x \quad P(X \in A)=\int_{-\infty}^{+\infty} P(\bar{X} \in A \mid I=y) f y(y) d y \\
& E(X \mid I=y)=\int_{-\infty}^{+\infty} x \mid \Psi(x \mid y) d x \quad E(X)=\int_{-\infty}^{+\infty} E(X \mid I=y) f Y(y) d y
\end{aligned}
$$

＊Dizcreterzndon variables \bar{X} or（ $\bar{X}, I)$ has finitely on countably infinitely many possible values，probability mass function PMF

$$
P_{\bar{X}}(x)=P(\bar{X}=x) \quad P_{\overline{\underline{X}}, \tilde{I}}(x, y)=P(\mathbb{X}=x, Z=y)
$$

Prpportes $P_{\mathbb{E}}(x) \in[0,1], \sum_{\text {ait }} P_{\bar{区}}(x)=1, P(\bar{x} \in A)=\sum_{x \in A} P_{\bar{区}}(x)$

$$
\begin{aligned}
& \left.P_{X, I}(x, y) \in[0,1]+\frac{\sum_{x, y}}{} P_{X, Y}(x, y)=1, P(x, y) \in A\right)=\left\{\sum_{(x, y) \in A} P_{X, Y}(x, y)\right. \\
& P_{区}(x)=\sum_{a \| y} P_{\bar{x}, 工}(x, y), P_{D}(y)=\sum_{a, 1} P_{X, y}(x, y)
\end{aligned}
$$

Z and I independent $\Leftrightarrow P_{Z_{1}}(x, y)=P_{X}(x) P_{E_{I}}(y)$
example Bernoulli：ru．X，pussiblevalues $\left\{0,13, P_{X}(0)=1 p, P_{X}(1)=p\right.$
example Binumiat ru \pm ，possible values $\{0, \ldots, n\}$ ， $P_{ \pm}(h)=(k)^{h}(1-p)^{n-k}$ for $k=0, \ldots, n$ ，same as the sum of a independent Beraculli ru＇s
example Poisson ru．X ，passidevalues $\{0,1, \ldots\}=1 \mathrm{~N}$ ， $P_{z}(k)=\lambda^{n} e^{-\lambda} / k!$ for $\xi_{1}=0,1,2, \ldots$, $f_{0}\left(\lambda_{1}\right)+\operatorname{lo}_{0}\left|\lambda_{2}\right|$ $=P_{0}\left(\lambda_{1}+\lambda_{2}\right)$ ，that is sum of two independent P_{0} is P_{0}
example geamatric（waiting time）th et X，possible values $\left\{1, p_{1}\right.$ 子．\} C $P_{ \pm}(k)=(1-p)^{k-1} p$ for $k=1,2, \ldots$ ， Arienber of Bernoulli trials that nave to be made until forest 1 occur．．．

Expectation $E(z)=\sum_{\text {minx }} x P_{x}(x) \quad E(g(x))=\sum_{a \pi x} g(x) P_{x}(x)$ $E(g(z, I))=\sum_{i \| x}^{\text {an k }} \sum_{y} g(x, y) P_{X_{i}}(x, y)$

Conditional PMF of X given that $I=y$

$$
\begin{aligned}
& P_{\text {EIII }}(x \mid y)=P_{\bar{X}, I I}(x, y) / P_{I}(y) \\
& P(X \in A \mid=y)=\sum_{x \in A} P_{\bar{X} \mid I}(x \mid y) \quad P(X \in A)=\sum_{a \| y} P(X \in A \mid I=y) P_{\square}(y) \\
& E(X \mid I=y)=\sum_{a N x} x P_{Z \mid c}(x \mid y) \quad E(X)=\sum_{a \| y} E(X \mid=y) P_{D}(y)
\end{aligned}
$$

Linearity of expectation $E\left(\sum_{i=1}^{n} \mathbb{X}_{i}\right)=\sum_{i=1}^{n} E\left(X_{i}\right)$
Vañance $\left.\operatorname{Var}(\mathbb{X})=O_{Z}^{2}=E\left((X-E(X))^{2}\right)=E\left(X^{2}\right)-E(X)\right)^{2}$
Covaniznce $\operatorname{Cuv}(\bar{Z}, I)=E((X-E(\mathbb{X}))(I-E(I)))=E(X I=I)-E|X| E(I)$ $\operatorname{Var}(\bar{X})=\operatorname{Cov}(\bar{X}, \bar{X})$
\bar{X} and I iave called uncurvelated if $C a(\mathbb{X}, I)=0$ \bar{X} and I independent $\Rightarrow X$ and I uncurvelated Bilineanty of covaniance $\operatorname{Cov}\left(\sum_{i=1}^{m} a_{i} z_{i} \sum_{j=1}^{n} b_{j} z_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} b_{j} q_{i}$ in particular $\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} E_{i}\right)=\operatorname{lon}\left(\sum_{i=1}^{n} a_{i} \bar{X}_{i}, \sum_{j=1}^{n} a_{j} \Sigma_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{j} G_{0}\left(X_{i}\right.$

Bivanztenormal distribution

$$
f_{x, I}(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-p^{2}} \exp }\left(\frac{\left(\frac{\left(x-\mu_{x}\right.}{\sigma_{x}}\right)^{2}-2 p\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)+\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}}{2\left(1-p^{2}\right)}\right)
$$

$\frac{\text { n-vanzte normal distubution }}{(\text { pagesi in first edition) }}$ see page 111 in Hso nin-natur $f_{\bar{X}_{1}, \ldots, E_{n}}\left(x_{1}, \ldots, x_{A}\right)=\frac{1}{(2 \pi)^{n / 2} \sqrt{\operatorname{det} k}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} K^{-1}(x-n)\right)$ where $\mu_{i}=E\left(\Sigma_{i}\right)$ and $K_{i j}=\operatorname{Cov}\left(\underline{E}_{i}, \underline{E}_{j}\right)$

Functions of madon vanzbles $\quad I=g(z), g: \mathbb{R} \rightarrow \mathbb{R}$ increasing

$$
\begin{aligned}
& \Rightarrow f_{I}(y)=\frac{d}{d y} P(Y \leq y)=\frac{d}{d y} P\left(X \leq y^{-1}(y)\right)=f_{X}\left(g^{-1}(y)\right) \frac{d}{d y} g^{-1}(y)
\end{aligned}
$$

Characlenizhz function (HF of cuntinuous vanable(s)

$$
\begin{aligned}
& \left.\psi_{\Sigma}(\omega)=E\left(e^{j \omega \bar{x}}\right)=\int_{-\infty}^{+\infty} e^{j \omega x} f_{ \pm} k\right) d x \quad \left\lvert\, f_{ \pm}(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-j \omega x} Y_{X}(\omega) d \omega\right. \\
& \psi_{X}, \underline{I}\left(\omega_{1}, \omega_{2}\right)=E\left(e^{j\left(\omega_{i} X+\omega_{2} y\right.}\right)-\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{j\left(\omega_{1} x+\omega_{2} y\right)} f_{\underline{E}}, I^{-}(x, y) d x d y \\
& f_{\bar{x}, E}(x, y)=\int_{-\infty}^{+\infty} \int_{\infty}^{+\infty} \frac{-\infty}{(2 \pi)^{2}} e^{-j\left(\omega_{i} x+\omega_{2} y\right)} \mu_{x_{1}}\left(\omega_{1}, \omega_{2}\right) d \omega_{i} d \omega_{2}
\end{aligned}
$$

