MSG800/MVE170 Basic Stochastic Processes Written exam Monday 11 January 2021 2–6 PM

TEACHER: Patrik Albin 0317723512 palbin@chalmers.se.

AIDS: All aids are permitted. (See the Canvas course "Ordinarie tentamen Modul: 0107, MVE170" with instructions for this reexam for clarifications.)

GRADES: 12 points for grades 3 and G, 18 points for grade 4, 21 points for grade VG and 24 points for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Task 1. Let $\{X(k)\}_{k\in\mathbb{Z}}$ be a discrete time WSS random process. Is it true in general that $Y(k) = \sin((X(k))^2), k \in \mathbb{Z}$, is also a WSS process? (5 points)

Task 2. Consider a time discrete \mathbb{Q} -valued (\mathbb{Q} being the rational numbers) Markov chain $\{X_k\}_{k=0}^{\infty}$. Let $Y_n = \sum_{k=0}^n h(n-k) X_k$ for $n \ge 0$ for some function $h : \mathbb{N} \to \mathbb{Q} \setminus \{0\}$. Is it true in general that $\{Y_n\}_{n=0}^{\infty}$ is also a Markov chain? (5 points)

Task 3. Let (X, Y) be a continuous random variable with probability density function $f_{X,Y}(x,y)$. Prove in two different ways that $\mathbf{E}\{\mathbf{1}_A(X)\mathbf{E}\{Y|X\}\} = \mathbf{E}\{\mathbf{1}_A(X)Y\}$ for the indicator $\mathbf{1}_A(X) = 1$ when $X \in A$ and $\mathbf{1}_A(X) = 0$ when $X \notin A$ of a set $A \subseteq \mathbb{R}$.

(5 points)

Task 4. Let $\{N(t)\}_{t\geq 0}$ be a Poisson process with rate $\lambda > 0$ and B a Binomial(1, 1/2)random variable that is independent of $\{N(t)\}_{t\geq 0}$. For which functions f(t) (if any) is $M(t) = f(t) (-7)^{B+N(t)}, t \geq 0$, a martingale with respect to the filtration $F_s = \sigma(M(r) :$ $r \in [0, s]), s \geq 0$? (5 points)

Task 5. A continuous time Markov chain $\{X(t)\}_{t\geq 0}$ has state space $\{-1, 1\}$, generator $G = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$ and starting distribution $\mu^{(0)} = \pi$ the stationary distribution. Calculate the characteristic function for the random variable (X(s), X(s+t)) for $s, t \geq 0$.

(5 points)

Task 6. Let $\{X(t)\}_{t\geq 0}$ denote the total number of customers in a M(1)/M(1)/1 queueing system (with $\lambda = \mu = s = 1$ and $K = \infty$). Find the probability distribution of the time $T = \min\{t\geq 0: X(t)=2\}$ when X(0) = 0. (5 points)

MSG800/MVE170 Solutions to exam 11 January 2021

Task 1. Let $X(k) = N_k$ for k even and $X(k) = e_k$ for k odd where $\{N_k\}$ and $\{e_k\}$ are independent random variables with N_k N(0, 1)-distributed and e_k a random sign (1 or -1 with probability 1/2 each). Then $\{X(k)\}$ is discrete time white noise and thus WSS. However $\mathbf{E}\{\sin(X(k)^2)\} = \int_{-\infty}^{\infty} \sin(x^2) \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \approx 0.351578$ for k even while $\mathbf{E}\{\sin(X(k)^2)\} = \sin(1) \approx 0.841471$ for k odd so that $\{\sin(X(k)^2)\}$ is not WSS.

Task 2. As $h \neq 0$, to know the history of the Y-process Y_n, \ldots, Y_0 is same thing as know the history of the X-process X_n, \ldots, X_0 . But $\mathbf{P}\{Y_{n+1} = j | Y_n, \ldots, Y_0\} = \mathbf{P}\{h(0)X_{n+1} + \sum_{k=0}^n h(n+1-k) X_k = j | X_n, \ldots, X_0\}$ which is not the same as $\mathbf{P}\{h(0)X_{n+1} + \sum_{k=0}^n h(n+1-k) X_k = j | Y_n\}$ as all X_n, \ldots, X_0 affect the event $\{h(0)X_{n+1} + \sum_{k=0}^n h(n+1-k) X_k = j | Y_n\}$ as all X_n, \ldots, X_0 affect the event $\{h(0)X_{n+1} + \sum_{k=0}^n h(n+1-k) X_k = j | Y_n\}$. So the answer in no!

Task 3. First proof using properties 4 and 7 on page 220 in Hsu: $\mathbf{E}\{\mathbf{1}_A(X)\mathbf{E}\{Y|X\}\} = \mathbf{E}\{\mathbf{1}_A(X)Y|X\}\} = \mathbf{E}\{\mathbf{1}_A(X)Y\}.$

Second elementry proof: $\mathbf{E}\{\mathbf{1}_A(X)\mathbf{E}\{Y|X\}\} = \int_{-\infty}^{\infty} \mathbf{1}_A(x)\mathbf{E}\{Y|X=x\} f_X(x) dx = \int_{-\infty}^{\infty} \mathbf{1}_A(x) \left(\int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy\right) f_X(x) dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{1}_A(x) y f_{X,Y}(x,y) dx dy = \mathbf{E}\{\mathbf{1}_A(X)Y\}.$ **Task 4.** $\mathbf{E}\{M(t)|F_s\} = f(t) (-7)^{B+N(s)} \mathbf{E}\{(-7)^{N(t)-N(s)}\} = f(t) (-7)^{B+N(s)} e^{-8\lambda(t-s)}$ for $0 \le s \le t$ giving $f(t) = C e^{8\lambda t}$ for some constant $C \in \mathbb{R}$.

Task 5. As $\mu^{(s)} = \pi = (\frac{1}{2}, \frac{1}{2}), (P_t)_{i,i} = \frac{1}{2}(1 + e^{-2t})$ and $(P_t)_{i,j} = \frac{1}{2}(1 - e^{-2t})$ for $i \neq j$ [cf. G&S Exercise 6.9.1], we have

$$\Psi_{X(s),X(s+t)}(\omega_{1},\omega_{2})$$

$$= \mathbf{E} \{ e^{j(\omega_{1}X(s)+\omega_{2}X(s+t))} \}$$

$$= \pi_{1} ((P_{t})_{11} e^{j(\omega_{1}+\omega_{2})} + (P_{t})_{1,-1} e^{j(\omega_{1}-\omega_{2})}) + \pi_{-1} ((P_{t})_{-1,1} e^{j(\omega_{2}-\omega_{1})} + (P_{t})_{-1,-1} e^{-j(\omega_{1}+\omega_{2})})$$

$$= \dots = \cos(\omega_{1}) \cos(\omega_{2}) - e^{-2t} \sin(\omega_{1}) \sin(\omega_{2}).$$

Task 6. Writing $T_{1\to 2}$ for the time it takes to move from state 1 to state 2 and using that $\Psi_{\exp(\lambda)}(\omega) = \frac{\lambda}{\lambda - j\omega}$ we have

$$\Psi_T(\omega) = \frac{1}{1 - j\omega} \Psi_{1 \to 2}(\omega) \quad \text{and} \quad \Psi_{1 \to 2}(\omega) = \frac{2}{2 - j\omega} \left(\frac{1}{2} \Psi_T(\omega) + \frac{1}{2} \Psi_0(\omega)\right)$$

giving

$$\Psi_T(\omega) = \frac{1}{1 - 3j\omega - \omega^2} = \frac{1}{\sqrt{5}} \frac{1}{\left(\frac{3}{2} - \frac{\sqrt{5}}{2}\right) - j\omega} - \frac{1}{\sqrt{5}} \frac{1}{\left(\frac{3}{2} + \frac{\sqrt{5}}{2}\right) - j\omega}$$

which by taking inverse CHF yields PDF $f_T(t) = \frac{1}{\sqrt{5}} e^{-(\frac{3}{2} - \frac{\sqrt{5}}{2})t} - \frac{1}{\sqrt{5}} e^{-(\frac{3}{2} + \frac{\sqrt{5}}{2})t}$ for $t \ge 0$.