MVE171 Basic Stochastic Processes and Financial Applications, Written exam Monday 8 January 2018 2-5 pm

Teacher and jour: Patrik Albin telephone 0317723512.
AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

GRADES: 8 points for grade 3,12 points for grade 4 and 16 points for grade 5 .
Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. Let $\{W(n)\}_{n \in \mathbb{Z}}$ be a discrete time white noise process with $\mathbf{E}\left\{W(n)^{2}\right\}=1$. Find the autocorrelation function $R_{X}(k, l)$ of the process $X(k)=W(k)+W(k-1)+$ $W(k-2) . \quad(5$ points)

Task 2. Give four examples of discrete time random processes where the first one is neither a Markov chain or a martingale, the second a Markov chain but not a martingale, the third a martingale but not a Markov chain and the fourth both a Markov chain and a martingale. (5 points)

Task 3. Calculate $\mathbf{P}\{X(0)+X(1) \geq Y(1)+Y(2)+1\}$ when $X(t)$ and $Y(t)$ are independent zero-mean continuous time WSS Gaussian processes with autocorrelation functions $R_{X}(\tau)=\mathrm{e}^{-|\tau|}$ and $R_{Y}(\tau)=1 /\left(1+\tau^{2}\right) . \quad$ (5 points)

Task 4. For a continuous time LTI system with WSS input and output $X(t)$ and $Y(t)$, respectively, with PSD's $S_{X}(\omega)$ and $S_{Y}(\omega)$, respectively, and with frequency response $H(\omega)$ it holds that $S_{Y}(\omega)=|H(\omega)|^{2} S_{X}(\omega)$. Prove this fact.

MVE171 Solutions to written exam 8 January

Task 2. It is easy to see that $X(k)$ is WSS with $R_{X}(k)=R_{X}(l, k+l)=3 \delta(k)$ $+2 \delta(k-1)+2 \delta(k+1)+\delta(k-2)+\delta(k+2)$.

Task 2. Take $W(k)$ as in Task 2 and let $X(0)=W(0), X(1)=X(0)+W(1)$ and $X(n)=X(n-1)+X(n-2)+W(n)$ for $n \geq 2$. Then $X(k)$ is a martingale but not Markov while $Y(k)=X(k)+k$ i neither martingale or Markov. The process $Z(k)=0$ is both martingale and Markov while $Z(k)+k$ is Markov but not martingale.

Task 3. The probability is $1-\Phi(1 / \sigma)$ where $\sigma^{2}=\operatorname{Var}\{X(0)+X(1)-Y(1)-Y(2)\}$ $=\operatorname{Var}\{X(0)+X(1)\}+\operatorname{Var}\{Y(1)+Y(2)\}=2\left(R_{X}(0)+R_{X}(1)\right)+2\left(R_{Y}(0)+R_{Y}(1)\right)$.

Task 4. See Chapter 6 in Hsu's book.

