MVE171 Basic Stochastic Processes and Financial Applications Written exam Saturday 8 December 2018 8.30-11.30

Teacher: Patrik Albin. Jour: Olof Elias, telephone 0317725325.
Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

Grades: 8 points for grade 3,12 points for grade 4 and 16 points for grade 5 , respectively.

Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. Let $\{X(t)\}_{t \in \mathbb{R}}$ be a WSS zero-mean Gaussian random process with autocorrelation function $R_{X}(\tau)=\mathrm{e}^{-|\tau|}$. Find the probability that $\mathbf{P}\{X(3) \geq X(1)+X(2)\}$.
(5 points)
Task 2. A discrete time Markov chain $\{X(n)\}_{n=0}^{\infty}$ has state space E, initial distribution $\boldsymbol{p}(0)$ and transition probability matrix P given by

$$
E=\{0,1,2\}, \quad \boldsymbol{p}(0)=\left[\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 / 2 & 1 / 2 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right],
$$

respectively. Find the expected value $\mathbf{E}\left\{T_{2}\right\}$ of the random variable $T_{2}=\min \{n \geq 0$: $X(n)=2\}$. [Hint: For a random variable ξ with probability mass function $\mathbf{P}\{\xi=k\}=$ $(1-p)^{k-1} p$ for $k=1,2,3, \ldots$ it holds that $\mathbf{E}\{\xi\}=1 / p$.] (5 points)

Task 3. Let $X_{n}=\sum_{k=1}^{n} Y_{k}$ for $n=1,2 \ldots$ and $X_{0}=0$ where Y_{1}, Y_{2}, \ldots are independent zero-mean random variables with unit variance. Show that $\left\{X_{n}^{2}-n\right\}_{n=0}^{\infty}$ is a martingale with respect to the filtration containing all information of the history of the process $F_{m}=\sigma\left(Y_{0}, \ldots, Y_{m}\right) . \quad$ (5 points)

Task 4. Consider an $\mathrm{M} / \mathrm{M} / 1 / K$ queueing system with $\lambda=\mu=1$. Calculate the average arrival rate of of customers that really enters the queueing system (and do not "bounce off" because system is full). (5 points)

MVE171 Solutions to written exam 8 December 2018

Task 1. $\mathbf{P}\{X(3) \geq X(1)+X(2)\}=\mathbf{P}\{X(3)-X(1)-X(2) \geq 0\}=\mathbf{P}\left\{\mathrm{N}\left(0, \sigma^{2}\right) \geq 0\right\}=1 / 2$ as $\sigma^{2}=3-2 \mathrm{e}^{-2}>0$.

Task 2. $\mathbf{E}\left\{T_{2}\right\}=(1 / 3) \cdot 1+(1 / 3) \cdot(1 /(1 / 2))+1 / 3 \cdot 0=1$.
Task 3. $\mathbf{E}\left\{X_{n}^{2}-n \mid F_{m}\right\}=\mathbf{E}\left\{\left(X_{n}-X_{m}\right)^{2} \mid F_{m}\right\}+\mathbf{E}\left\{2\left(X_{n}-X_{m}\right) X_{m} \mid F_{m}\right\}+\mathbf{E}\left\{X_{m}^{2} \mid F_{m}\right\}$ $-n=\mathbf{E}\left\{\left(X_{n}-X_{m}^{2}\right\}+2 X_{m} \mathbf{E}\left\{X_{n}-X_{m}\right\}+X_{m}^{2}-n=(n-m)+0+X_{m}^{2}-n=X_{m}^{2}-m\right.$ for $0 \leq m<n$.

Task 4. As $p_{n}=1 /(K+1)$ for $n=0, \ldots, K$ we have $\lambda_{a}=\lambda\left(1-p_{K}\right)=K /(K+1)$.

