MVE171 Basic Stochastic Processes and Financial Applications

Written exam Wednesday 24 April 2019 8.30-11.30 AM

Teacher: Patrik Albin. Jour: Barbara Schnitzer, telephone 0317725325.
Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

GRADES: 8 points for grade 3,12 points for grade 4 and 16 points for grade 5 , respectively.

Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. Let $\{X(t)\}_{t \geq 0}$ be a unit rate/intensity Poisson process. Find a function $f:[0, \infty) \rightarrow \mathbb{R}$ such that $\left\{f(t) 2^{X(t)}\right\}_{t \geq 0}$ is a martingale with respect to the filtration containing all information of the history of the process $F_{s}=\sigma(X(r): r \in[0, s])$.
(5 points)
Task 2. A discrete time Markov chain $\{X(k)\}_{k=0}^{\infty}$ has state space E, initial distribution $\boldsymbol{p}(0)$ and transition probability matrix P given by

$$
E=\{0,1,2\}, \quad \boldsymbol{p}(0)=\left[\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{ccc}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]
$$

respectively. Calculate the autocorrelation function $\mathbf{E}\{X(k) X(k+n)\}$ for $k, n \in \mathbb{N}$ with $n \geq 1$. (5 points)

Task 3. Give example of two random processes $X(t)$ and $Y(t)$ that have common mean function $E[X(t)]=E[Y(t)]$ and common autocorrelation function $E[X(s) X(t)]=$ $E[Y(s) Y(t)]$ for all s and t but that are different processes (that is, they have different probabilistic properties). (5 points)

Task 4. Consider an $M / M / 3 / 4$ queueing system with $\lambda=\mu=1$ and let $X(t)$ denote the total number of customers in the queueing system at time $t \geq 0$. The queueing system is started empty at time zero $X(0)=0$. system. Write a computer programe that by means of stochastic simulation finds an approximative value of the probability $\mathbf{P}\left\{\max _{0 \leq t \leq 4} X(t)=4\right\}$. (5 points)

MVE171 Solutions to written exam 24 April 2019

Task 1. $\mathbf{E}\left\{2^{X(t)} \mid F_{s}\right\}=\mathbf{E}\left\{2^{X(s)} 2^{X(t)-X(s)} \mid F_{s}\right\}=2^{X(s)} \mathbf{E}\left\{2^{X(t)-X(s)}\right\}=2^{X(s)} \sum_{k=0}^{\infty} 2^{k}$ $\times(t-s)^{k} \mathrm{e}^{-(t-s)} /(k!)=2^{X(s)} \mathrm{e}^{t-s}$ so that we must take $f(t)=\mathrm{e}^{-t}$.

Task 2. As $\boldsymbol{p}(k)=\boldsymbol{p}(0)$ is the stationary distribution and $P^{n}=P$ for $n \geq 1$ we have $\mathbf{E}\{X(k) X(k+n)\}=1 \cdot 1 \cdot p_{1}(k) p_{11}^{(n)}+1 \cdot 2 \cdot p_{1}(k) p_{12}^{(n)}+2 \cdot 1 \cdot p_{2}(k) p_{21}^{(n)}+2 \cdot 2 \cdot p_{2}(k) p_{22}^{(n)}=$ $\frac{1}{9}+\frac{2}{9}+\frac{2}{9}+\frac{4}{9}=1$ for $n \geq 1$.

Task 3. Let $\{X(t)\}_{t \in \mathbb{Z}}$ be independent standard normal random variables while $\{Y(t)\}_{t \in \mathbb{Z}}$ are independent random variables with $P(Y(t)=1)=P(Y(t)=-1)=1 / 2$.

Task 4.

```
In[1]:= {repetitions, count} = {1000000, 0};
    For[i=1, i<=repetitions, i++, X=0; time=0;
        While[X<4 && time<=4,
            If[X==0, time=time+Random[ExponentialDistribution[1]]; X=1,
            If [X==1, time=time+Random[ExponentialDistribution[2]];
                    If [Random[UniformDistribution[{0,1}]]<1/2, X=0, X=2],
            If [X==2, time=time+Random[ExponentialDistribution[3]];
                    If[Random[UniformDistribution[{0,1}]]<2/3, X=1, X=3],
            If [X==3, time=time+Random[ExponentialDistribution[4]];
                If[Random[UniformDistribution[{0,1}]]<3/4, X=2, X=4]]]]];
    If[time<=4, count=count+1]];
    N[count/repetitions]
```

