MVE171 Basic Stochastic Processes and Financial Applications

Written exam 27 Tuesday August 2019 2-5 PM

Teacher: Patrik Albin. Jour: Sandra Eriksson Barman, telephone 0317725325.
Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

GRADES: 8 points for grade 3,12 points for grade 4 and 16 points for grade 5 .
Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. Write a computer programme in some easy to understand code or pseudo-code that determines by means of simulations an approximative value for the probability $\mathbf{P}\{X(t)>t$ for some $t \in[0,10]\}$ for a unit rate Poisson process $\{X(t)\}_{t \geq 0}$.

Task 2. Let $Y_{n}=((1-p) / p)^{S_{n}}$ for $n \geq 0$, where $S_{0}=0, S_{n}=\sum_{i=1}^{n} X_{i}$ and X_{1}, X_{2}, \ldots are independent identically distributed r.v.'s such that $P\left(X_{i}=-1\right)=1-p$ and $P\left(X_{i}=\right.$ 1) $=p$ where $0<p<1$ is a constant. Show that $\left\{Y_{n}\right\}_{n=0}^{\infty}$ is a martingale with respect to the filtration $F_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. (5 points)

Task 3. Give an example of a discrete-parameter Markov chain $\{X(n), n \geq 0\}$ that has both periodic and aperiodic states. (5 points)

Task 4. Let $\{X(t), t \in \mathbb{R}\}$ be a WSS process and $\alpha>0$ a constant. Show that $\{X(\alpha t)$, $t \in \mathbb{R}\},\{X(t-\alpha), t \in \mathbb{R}\}$ and $\{X(-t), t \in \mathbb{R}\}$ are also WSS processes.

MVE171 Solutions to written exam 27 August 2019

Task 1. rep $=100000$; For $[i=1$; count=0, $i<=r e p, i++, X=0$; succ $=0$;
$\mathrm{t}=$ Random[ExponentialDistribution[1]];
While[($t<=10) \& \&($ succ=0 $), t=t+R a n d o m[E x p o n e n t i a l D i s t r i b u t i o n[1]] ; ~$ $X=X+1$; If [X>t, succ=1]] count=count+succ] ; N [count/rep]

Task 2. $\mathbf{E}\left\{Y_{n+1} \mid F_{n}\right\}=Y_{n} \mathbf{E}\left\{((1-p) / p)^{X_{n+1}}\right\}=Y_{n}[((1-p) / p) \cdot p+(p /(1-p)) \cdot(1-p)]=Y_{n}$.
Task 3. For example the chain with state space E and transition probability matrix P given by

$$
E=\{0,1,2,3\} \quad \text { and } \quad P=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1 / 2 & 1 / 2
\end{array}\right]
$$

respectively, where the states $\{0,1\}$ have period 2 while the states $\{2,3\}$ are aperiodic.
Task 4. Clearly, $X(\alpha t), X(t-\alpha)$ and $X(-t)$ all have the same constant (time-invariant) mean μ_{X} as has $X(t)$ while $\mathbf{E}\{X(\alpha t) X(\alpha(t+\tau))\}=R_{X}(\alpha \tau), \mathbf{E}\{X(t-\alpha) X(t+\tau-\alpha)\}=$ $R_{X}(\tau)$ and $\mathbf{E}\{X(-t) X(-(t+\tau))\}=R_{X}(-\tau)=R_{X}(\tau)$ do not depend on $t \in \mathbb{R}$.

