## MVE171 Basic Stochastic Processes and Financial Applications, List of Errata for Hsu's book, Ver 13 December 2012

Equation 2.41. $F_{X}(X)$ should be $F_{X}(x)$.
Page 60. On row $6|x|$ should be $\lfloor x\rfloor$.
Equation 3.14. It should be $\lim _{x \rightarrow \infty}$ instead of $\lim _{y \rightarrow \infty}$.
Figure 3.4. It should be $P(Y=0 \mid X=1)$ instead of $P(Y=1 \mid X=1)$ on the diagonal.
Problem 4.100. $X^{\prime \prime}$ should be corrected to $X^{n}$.
Equation 5.28 is wrong as is the proof of (another version of) that formula in Problem
5.25: The second equality in the three line equation on the middle of page 234 is erroneous.

To see this we may send $x_{n-1} \rightarrow \infty$ on both sides of the equation to obtain

$$
F_{X}\left(x_{1}, \ldots, x_{n-2}, x_{n} ; t_{1}, \ldots, t_{n-2}, t_{n}\right)=F_{X}\left(x_{n} ; t_{n}\right) \times F_{X}\left(x_{1}, \ldots, x_{n-2} ; t_{1}, \ldots, t_{n-2}\right)
$$

which is to say that $X\left(t_{n}\right)$ is independent of $X\left(t_{1}\right), \ldots, X\left(t_{n-2}\right)$. This is absurd as this need not hold at all for a Markov process (as is e.g., exemplified by a Poisson process).

A correct version of Equation 5.28 is the formula for PMF's given in Problem 5.88.
Page 210. The definition of wide-sense stationarity should be the conditions (5.21)-(5.22).
Equation 5.29. It should be $E\left[X\left(t_{i}\right)\right]$ instead of just $E\left[X\left(t_{i}\right)\right.$.
Page 215. On row 3 from the bottom (Prob. 5.74) should be (Prob. 5.94).
Lemma 5.8.1. It should be $T_{1}$ and $T_{2}$ instead of $n_{1}$ and $n_{2}$, respectively.
Equation 5.121. It should be $\cos \omega \tau$ instead of $\cos \omega t$.
Problem 5.37. It should be $\operatorname{gcd}\{2,4,6, \ldots\}$ instead of $\operatorname{gcd}\{2,5,6, \ldots\}$.
Problem 5.49. Four occurances of $X(t+\Delta t)-X(0)$ should be $X(t+\Delta t)-X(t)$.
Equation 5.202. It should be $\sigma$ 's instead of $a$ 's in the $\mathbf{K}_{\mathbf{X}}$-matrix.
Problem 5.70. On row 2 the alternative possible value of $X_{i}$ should not be 0 but -1 with probablity $q=1-p$. Such a random variable is not called Bernoulli distributed.

Problem 5.72. On row $11 \frac{n(n-1)}{2}$ should be $n(n-1)$ and $\frac{n(n+3)}{2}$ should be $n(n+1)$.
Problem 5.74. On row 7 it should be $\frac{n+2-k}{n+2}$ instead of $\frac{n+2+k}{n+2}$.
Problem 5.76. Change $E\left(\mid g(X n \mid)\right.$ to $E\left(\left|g\left(X_{n}\right)\right|\right)$.
Problem 5.77. The calculation on row 4 of the problem should be corrected to

$$
\mathbf{E}\left\{\left|X_{n}\right|\right\}=\mathbf{E}\left\{\left|\mathbf{E}\left\{X \mid F_{n}\right\}\right|\right\} \leq \mathbf{E}\left\{\mathbf{E}\left\{|X| \mid F_{n}\right\}\right\}=\mathbf{E}\{|X|\}<\infty
$$

The initial condition should be $\mathbf{E}\{|X|\}<\infty$ instead of $\mathbf{E}\{X\}<\infty$ accordingly.
Problem 5.78. Theorem 5.82 should be Theorem 5.8.2 at two occurances.
Problem 5.79. On row 8 of page 265 a $\}$ is missing.
Page 266. On row $11 s_{n}$ should be $S_{n}$ and on row -4 the first $\frac{a}{a+b}$ should be $\frac{b}{a+b}$.

Problem 5.82. It should be $X(t)-\lambda t$ instead of $x(t)-\lambda t$ at two places.
Problem 6.8 b. In the solution it should be $\partial^{2} R_{X}(s-t) / \partial t \partial s=-d^{2} R_{X}(\tau) / d \tau^{2}$.
Page 288. On row 8 it should be $E[X(s) X(\beta)]$ and on row 12 the second $s^{3}$ should be $s^{2}$.
Equation 6.137. It should be $R_{X^{\prime}}(t, s)$ instead of $R_{X}(t, s)$.
Page 295. On the last line $\frac{a}{\left(a^{2}+b^{2}\right) b}$ should be $\frac{a}{\left(a^{2}-b^{2}\right) b}$.
Equation 9.20. In the sum it should be $(s \rho)^{n}$ instead of just $(s \rho)$.
Equations 9.22 and 9.36. Correct $p$ to $\rho$ in the former and $\rho_{0}$ to $p_{0}$ in the latter.
Equation 9.39. On the right-hand side $L_{q}$ should be divided by $\lambda_{e}=\lambda\left(1-p_{K}\right)$.
Problem 9.13. On row 9 (9.16) should be (9.17). In the evaluation of $W_{q}$ at the end $-1 / \mu$ $=-3$ has been forgotten in the middle term (but the answer 6.39 min is right).

Problem 9.16. The "balance equation" (9.2) $L=\lambda W$ holds for all steady-state queues provided that we set the total time spent in the system to zero for customers arriving when the system is full for queues with $K<\infty$, i.e., if we interpret the fact that customers arriving to a full system bounces away as that they spend zero time in system.

If we instead (as is custom and as is done in the book) define $W$ as the expected total time spent in the system for customers that really join the system, then we must divide the $W$ from the previous paragraph by $1-p_{K}$ to get this $W$. And then we have Equation 9.31 $L=\lambda\left(1-p_{K}\right) W$ for this alternative (and customary) definition of $W$.

In Problem 9.16 the sum in the last equation of page 362 should only run to $K-1$, giving $W_{q}=\left(L-K p_{K}\right) / \mu$. The sum in first formula on page 363 should also only run to $K-1$ giving $W=\left(L+1-(K+1) p_{K}\right) / \mu$. Now, here we are dealing with the first definition of $W$ from above, i.e., we assign zero time in the system for bouncing customers and let that zero influence the mean value $W$, so that $L=\lambda W$ for this $W$.

As we want the customary definition of $W$ to be the expected total time spent in the system for customers that really joins the system we have to divide the $W$ obtained in the previous paragraph by $1-p_{K}$ giving the following correct version of Equation 9.59: $W=\left(L+1-(K+1) p_{K}\right) /\left(\mu\left(1-p_{K}\right)\right)$. The corresponding correct version of Equation 9.58 is $W_{q}=\left(L+1-(K+1) p_{K}\right) /\left(\mu\left(1-p_{K}\right)\right)-1 / \mu=\left(L-K p_{K}\right) /\left(\mu\left(1-p_{K}\right)\right)$.

Problem 9.18. On row 3 from the bottom $p^{m}$ should be $\rho^{m}$.
Problem 9.29. Hsu has used the faulty Equation 9.59 (see above) to obtain $W=(L+$ 1) $/ \mu=\ldots=0.336$ hours $=20.15$ minutes, while a correct answer comes from using the correct version of that formula from above $W=\left(L+1-(K+1) p_{K}\right) /\left(\mu\left(1-p_{K}\right)\right)=$ $\left(L-K p_{K}\right) /\left(\mu\left(1-p_{K}\right)\right)+1 / \mu=7 / 57+1 / 6=0.289$ hours $=17.4$ minutes (or from using Equation 9.31). The answer to task b is $W_{q}=W-1 / \mu=W-10$ minutes $=7.4$ minutes.

Problem 9.30. The correct answer is 1.
Table B-2. In Formula 11 the right hand side should be $X(\omega)=(\pi / a) \mathrm{e}^{-a|w|}$.

