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Chapter 0

Background

0.1 Finite probability theory

We begin by recalling a few results on finite probability spaces. For more details on this
subject, see Chapter 5 in [2].

Let Ω = {ω1, . . . , ωm} be a sample space containing m elements. Let p = (p1, . . . , pm) be a
probability vector, i.e.,

0 < pi < 1, for all i = 1, . . . ,m, and
m∑
i=1

pi = 1.

We define pi = P({ωi}) to be the probability of the event {ωi}. If A ⊆ Ω is a non-empty
event, we define the probability of A as

P(A) =
∑
i:ωi∈A

pi =
∑
ω∈A

P({ω}).

Moreover P(∅) = 0. The pair (Ω,P) is called a finite probability space. For example,
given p ∈ (0, 1), the probability space

ΩN = {H,T}N , Pp({ω}) = pNH(ω)(1− p)NT (ω)

is called the N-coin toss probability space. Here NH(ω) is the number of heads in the
toss ω ∈ ΩN and NT (ω) = N − NH(ω) is the number of tails. In this probability space,
tosses are independent and each toss has the same probability p to result in a head.

A random variable is a function X : Ω → R. Y is said to be X-measurable if there
exists a function g such that Y = g(X). Two random variables X, Y are independent
if P(X ∈ I, Y ∈ J) = P(X ∈ I)P(Y ∈ J) for every I ⊆ Im(X) and J ⊆ Im(Y ), where
Im(X) = {y ∈ R : y = X(ω) for some ω ∈ Ω} is the image of X.
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The expectation of X is denoted by E[X]:

E[X] =
∑
ω∈Ω

X(ω)P({ω}).

and satisfies the properties in the following theorem.

Theorem 0.1. Let X, Y be random variables, g : R→ R, α, β ∈ R. The following holds:

1. E[αX + βY ] = αE[X] + βE[Y ] (linearity).

2. If X ≥ 0 and E[X] = 0, then X = 0.

3. If X, Y are independent then E[XY ] = E[X]E[Y ].

4. If Y = g(X), i.e., if Y is X-measurable, then

E[g(X)] =
∑

x∈Im(X)

g(x)fX(x), (1)

where fX(x) = P(X = x) is the probability distribution of the random variable X.

For instance in the N -coin toss probability space consider a random variable X which is
measurable with respect to NH , i.e., X(ω) = g(NH(ω)). Then

Ep[X] =
∑
ω∈ΩN

X(ω)P({ω}) =
∑
ω∈ΩN

g(NT (ω))pNH(ω)(1− p)NT (ω)

=
N∑
k=0

(
N

k

)
g(k)pk(1− p)k, (2)

where we used that the are
(
N
k

)
N -tosses such that NT (ω) = k.

The quantity
Var[X] = E[(X − E[X])2] = E[X2]− E[X]2

is called variance of the random variable X. The quantity

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ]) = E[XY ]− E[X]E[Y ]

is called covariance of the random variables X, Y . We have the identities

Var[X] = Cov[X,X], Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X, Y ].

If Var[X],Var[Y ] are both positive (i.e., if X, Y are not deterministic constants), the quantity

Corr[X, Y ] =
Cov[X,Y]√

Var[X]Var[Y ]
∈ [−1, 1]
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is called correlation of X, Y . If Corr[X, Y ] = 0, the random variables X, Y are said to be
uncorrelated. It follows by Theorem 0.1(3) that X, Y independent ⇒ X, Y uncorrelated
(while the opposite is in general not true).

The conditional expectation of X given Y is denoted by E[X|Y ]:

E[X|Y ](ω) =
∑

x∈Im(X)

P(X = x|Y = Y (ω))x,

where P(A|B) = P(B)−1P(A ∩ B) is the conditional probability of the event A given the
event B. The conditional expectation is a Y -measurable random variable and satisfies the
following properties.

Theorem 0.2. Let X, Y, Z : Ω→ R be random variables and α, β ∈ R. Then

1. E[αX + βY |Z] = αE[X|Z] + βE[Y |Z] (linearity).

2. If X is independent of Y , then E[X|Y ] = E[X].

3. If X is Y -measurable, then E[X|Y ] = X.

4. E[E[X|Y ]] = E[X].

5. If X is Z-measurable, then E[XY |Z] = XE[Y |Z].

6. If Z is Y -measurable then E[E[X|Y ]|Z] = E[X|Z].

These properties remain true if the conditional expectation is taken with respect to several
random variables.

A discrete stochastic process is a (possibly finite) sequence {X0, X1, X2, . . . } = {Xn}n∈N
of random variables. We refer to the index n in Xn as time step. If the discrete stochastic
process is finite, i.e., if it runs only for a finite number N ≥ 1 of time steps, we shall denote
it by {Xn}n=0,...,N and call it a N-period process. At each time step, a discrete stochastic
process on a finite probability space is a random variable with finitely many possible values.
More precisely, for all n = 0, 1, 2, . . . , the value xn of Xn satisfies xn ∈ Im(Xn). We call xn
an admissible state of the stochastic process. Note that xn is an admissible state if and
only if P(Xn = xn) > 0.

A stochastic process {Yn}n∈N is said to be measurable with respect to {Xn}n∈N if for
all n ∈ N there exists a function gn : Rn+1 → R such that Yn = gn(X0, X2, . . . , Xn). If
Yn = hn(X0, . . . , Xn−1) for some function hn : Rn → R, n ≥ 1, then {Yn}n∈N is said to be
predictable from the process {Xn}n∈N.

A discrete stochastic process {Xn}n∈N on the finite probability space (Ω,P) is called a mar-
tingale if

E[Xn+1|X1, X2, . . . Xn] = Xn, for all n ∈ N. (3)
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The interpretation is the following: The variables X0, X1, . . . Xn contains the information
obtained by “looking” at the stochastic process up to the time step n. For a martingale
process, this information is not enough to estimate whether, in the next step, the process
will raise or fall. Martingales have constant expectation, i.e., E[Xn] = E[X0], for all n ∈ N.

A discrete stochastic process {Xn}n∈N on the finite probability space (Ω,P) is called a
Markov chain if it satisfies the Markov property:

P(Xn+1 = xn+1|Xn = xn) = P(Xn+1 = xn+1|X1 = x1, X2 = x2, . . . , Xn = xn), (4)

for all n ∈ N and for all admissible states x0 ∈ Im(X0), . . . , xn+1 ∈ Im(Xn+1) such that
P(X0 = x0, X1 = x1, . . . Xn = xn) is positive1. The interpretation is the following: If
{Xn}n∈N is a Markov process, then the probability of transition from the state xn to the
state xn+1 does not depend on the states occupied by the process before time n. Thus
Markov processes are “memoryless”: at each time step they “forget” what they did earlier.

Remark 0.1. If {Xn}n∈N is a Markov process and {Yn}n∈N is measurable with respect to
{Xn}n∈N, then the Markov property (4) implies

E[Yn|Xn−1] = E[Yn|X0, . . . Xn−1]

The left hand side of (4) is called the transition probability from the state xn to the state
xn+1 and is denoted also as P(xn → xn+1). If P(xn → xn+1) is independent of n = 1, 2, . . . ,
the Markov process is said to be time homogeneous.

Note that both the Markov property and the martingale property depend on the probability
measure, i.e., a stochastic process can be a martingale and/or a Markov process in one
probability P and neither of them in another probability P′.

Example: Random Walk. Consider the following stochastic process {Xn}n=1,...,N defined
on the N -coin toss probability space (ΩN ,Pp):

ω = (γ1, . . . , γN) ∈ ΩN , Xn(ω) =

{
1 if γn = H
−1 if γn = T

.

The random variables X1, . . . , XN are independent and identically distributed (i.i.d), namely

Pp(Xn = 1) = p, Pp(Xn = −1) = 1− p, for all n = 1, . . . , N.

Hence
E[Xn] = 2p− 1, Var[Xn] = 4p(1− p), for all n = 1, . . . , N .

Now, for n = 1, . . . , N , let

M0 = 0, Mn =
n∑
i=1

Xi.

1That is to say, there must be a path of the stochastic process that connects the states x0, . . . , xn.
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The stochastic process {Mn}n=0,...,N is measurable (but not predictable) with respect to the
process {Xn}n=1,...,N and is called (N-period) random walk. It satisfies

E[Mn] = n(2p− 1), for all n = 0, . . . , N.

Moreover, since it is the sum of independent random variables, the random walk has variance
given by

Var[M0] = 0, Var[Mn] = Var(X1 +X2 + · · ·+Xn) =
n∑
i=1

Var[Xi] = 4np(1− p).

When p = 1/2, the random walk is said to be symmetric. In this case {Mn}n=0,...,N

satisfies E[Mn] = 0 and Var[Mn] = n, n = 0, . . . , N . When p 6= 1/2, {Mn}n=0,...,N is called
an asymmetric random walk, or a random walk with drift.

If Mn = k then Mn+1 is either k + 1 (with probability p), or k − 1 (with probability 1− p).
Hence we can represent the paths of the random walk by using a binomial tree, as in the
following example for N = 3:

M3 = 3

M2 = 2

p
77

1−p

''
M1 = 1

p
77

1−p

''

M3 = 1

M0 = 0

p
77

1−p

''

M2 = 0

p
77

1−p

''
M1 = −1

p
77

1−p

''

M3 = −1

M2 = −2

p
77

1−p

''
M3 = −3

By inspection we see that the admissible states of the symmetric random walk at the step n
are given by

Im(Mn) = {−n,−n+ 2,−n+ 4, . . . , n− 2, n}.

Let m0 = 0, m1 ∈ {−1, 1} = Im(M1), . . . , mN ∈ {−N,−N + 2, . . . , N − 2, N} = Im(MN)
be the admissible states at each time step. From the binomial tree of the process it is clear
that there exists a path connecting m0,m1, . . . ,mN if and only if mn = mn−1 ± 1, for all
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n = 1, . . . , N , and we have

P(Mn = mn|M1 = m1, . . . ,Mn−1 = mn−1) = P(Mn = mn|Mn−1 = mn−1)

=

{
p if mn = mn−1 + 1
1− p if mn = mn−1 − 1

Hence the random walk is an example of time homogeneous Markov chain.

Next we show that the symmetric random walk is a martingale. In fact, using the linearity
of the conditional expectation we have

E[Mn|M1, . . . ,Mn−1] = E[Mn−1 +Xn|M1, . . . ,Mn−1]

= E[Mn−1|M1, . . . ,Mn−1] + E[Xn|M1, . . . ,Mn−1].

As Mn−1 is measurable with respect to M1, . . . ,Mn−1, then E[Mn−1|M1, . . . ,Mn−1] = Mn−1,
see Theorem 0.2(3). Moreover, as Xn is independent of M1, . . . ,Mn−1, Theorem 0.2(2) gives
E[Xn|M1, . . . ,Mn−1] = E[Xn] = 0. It follows that E[Mn|M1, . . . ,Mn−1] = Mn−1, i.e., the
symmetric random walk is a martingale. However the asymmetric random walk (p 6= 1/2)
is not a martingale, as it follows by the fact that its expectation E[Mn] = n(2p − 1) is not
constant.

Generalized random walk. A random walk is any discrete stochastic process {Mn}n∈N
which satisfies the following properties:

• Im(Mn) = {−n,−n+ 2,−n+ 4, . . . , n− 2, n}, for all n = 0, 1, . . .

• {Mn}n∈N is a time-homogeneous Markov chain

• There exists p ∈ (0, 1) such that for (mn−1,mn) ∈ Im(Mn−1)× Im(Mn), the transition
probability P(mn−1 → mn) is given by

P(mn−1 → mn) =


p if mn = mn−1 + 1
1− p if mn = mn−1 − 1
0 otherwise

We may generalize this definition by relaxing the second and third properties as follows.

Definition 0.1. A discrete stochastic process {Mn}n∈N on a finite probability space is called
a generalized random walk if it satisfies the following properties:

1. Im(Mn) = {−n,−n+ 2,−n+ 4, . . . , n− 2, n}, for all n = 0, 1, . . .

2. {Mn}n∈N is a Markov chain

3. For all n = 1, 2, . . . there exist pn : Im(Mn−1)→ (0, 1) such that

P(mn−1 → mn) =


pn(mn−1) if mn = mn−1 + 1
1− pn(mn−1) if mn = mn−1 − 1
0 otherwise
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The binomial tree of a generalized random walk will be written as in the following example:

M3 = 3

M2 = 2

p3(2)
77

1−p3(2)

''
M1 = 1

p2(1)
77

1−p2(1)

''

M3 = 1

M0 = 0

p1(0)
77

1−p1(0)

''

M2 = 0

p3(0)
77

1−p3(0)

''
M1 = −1

p2(−1)
77

1−p2(−1)

''

M3 = −1

M2 = −2

p3(−2)
77

1−p3(−2)

''
M3 = −3

Note that when pn ≡ p for all n = 1, 2, . . . , the generalized random walk becomes the
standard random walk considered before.

For later purpose we give below a formula to compute the probability that the generalized
random walk follows a given path. It is clear that any path in the N -period random walk
is uniquely identified by a vector x ∈ {−1, 1}N , i.e., a N -dimensional vector where each
component is either −1 or 1. More precisely, the path of the random walk corresponding to
x ∈ {−1, 1}N it the unique path satisfying M0 = 0 and Mi = Mi−1 + xi, i = 1, . . . , N .

Theorem 0.3. Let x ∈ {−1, 1}N and set x0 = 0. The probability P(x) that the generalized
random walk follows that path x is given by

P(x) =
N∏
k=1

[
−min(xk, 0) + xkpk

(
k−1∑
j=0

xj

)]
. (5)

The previous theorem can be easily proved by induction, but here we limit ourselves to
consider one example of application of (5). In the 3-period model consider the path x =
(−1,−1, 1). Then according to the previous theorem

P((−1,−1, 1)) = (−min(−1, 0) + (−1)p1(0))(−min(−1, 0) + (−1)p2(0− 1))

× (−min(1, 0) + (1)p2(0− 1− 1)) = (1− p1(0))(1− p2(−1))p2(−2).

That this formula is correct is easily seen in the binomial tree above.
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The generalized random walk will be used in the project in Chapter 1 to introduce and study
the properties of a generalized binomial model in which the interest rate of the risk-free asset
is a stochastic process. The standard binomial model, in which the risk-free rate is assumed
to be constant, is review in the next section.

0.2 The binomial options pricing model

Given 0 < p < 1, S0 > 0 and u > d, the binomial stock price at time t is given by
S(0) = S0 and

S(t) =

{
S(t− 1)eu with probability p
S(t− 1)ed with probability 1− p , for t = 1, . . . , N. (6)

If S(t) = S(t− 1)eu we say that the stock price goes up at time t, while if S(t) = S(t− 1)ed

we say that it goes down at time t (although this terminology is strictly correct only when
u > 0 and d < 0). For instance, for N = 3 the binomial stock can be represented as in the
following recombining binomial tree:

S(3) = S0e
3u

S(2) = S0e
2u

p
66

1−p

((
S(1) = S0e

u

p
66

1−p

((

S(3) = S0e
2u+d

S(0) = S0

p
66

1−p

((

S(2) = S0e
u+d

p
66

1−p

((
S(1) = S0e

d

p
66

1−p

((

S(3) = S0e
u+2d

S(2) = S0e
2d

p
66

1−p

((
S(3) = S0e

3d

The possible stock prices at time t belong to the set

Im(S(t)) = {S0e
Nu(t)u+(t−Nu(t))d, Nu(t) = 0, . . . , t},

where Nu(t) is the number of times that the price goes up up to and including time t. It
follows that there are t + 1 possible prices at time t and so the number of nodes in the
binomial tree grows linearly in time.
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The binomial stock price can be interpreted as a stochastic process defined on the N -coin
toss probability space (ΩN ,Pp). To see this, consider the following i.i.d. random variables

Xt : ΩN → R, Xt(ω) =

{
1, if the tth toss in ω is H
−1, if the tth toss in ω is T

, t = 1, . . . , N. (7)

We can rewrite (6) as S(t) = S(t − 1) exp[(u + d)/2 + (u − d)Xt/2], which upon iteration
leads to

S(t) = S0 exp

[
t

(
u+ d

2

)
+

(
u− d

2

)
Mt

]
, Mt = X1 + · · ·+Xt, t = 1, . . . , N. (8)

Hence S(t) : ΩN → R and therefore {S(t)}t=0,...,N is a N -period stochastic process on the N -
coin toss probability space (ΩN ,Pp). In this context, Pp is called physical (or real-world)
probability measure, to distinguish it from the martingale (or risk-neutral) probability
introduced below. Letting M0 = 0, we have that {Mt}t=0,...,N is a random walk (which is
asymmetric for p 6= 1/2). It follows that {S(t)}t=0,...,N is measurable, but not predictable,
with respect to {Mt}t=0,...,N . For each ω ∈ ΩN , the vector (S(0), S(1, ω), . . . , S(N,ω)) is
called a path of the binomial stock price.

A binomial market is a market that consists of one stock with price given by (8), and a
risk-free asset with value B(t) at time t = 1, . . . , N . In the standard binomial model it is
assumed that B(t) is a deterministic function of time with constant interest rate, namely

r = logB(t+ 1)− logB(t), or R =
B(t+ 1)−B(t)

B(t)
.

It follows that the value of the risk-free asset at time t can be written in either of the two
forms

B(t) = B0e
rt, B(t) = (1 +R)t, t = 1, . . . , N,

where B0 is the initial value of the risk-free asset. We shall refer to R as the discretely
compounded risk-free rate and to r as the continuously compounded risk-free rate
(although the latter terminology is only strictly correct in the time continuum limit, i.e.,
when we let the length of the time step tends to zero). Note also that

r = log(1 +R). (9)

As r and R are small, then r ≈ R.

Remark 0.2. In [2] only the risk-free rate r was used. Here we introduced the discretely
compounded risk-free rate R as well because it will be used in Chapter 1 to formulate a
generalized binomial model with stochastic risk-free rate.

The quantity

S∗(t) = e−rtS(t), or equivalently S∗(t) =
S(t)

(1 +R)t
,
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is called the discounted price of the stock (at time t = 0).

In the following we denote by Ep the (possibly conditional) expectation in the probability
space (ΩN ,Pp).

Theorem 0.4. If r /∈ (d, u), there is no probability measure Pp on the sample space ΩN

such that the discounted stock price process {S∗(t)}t=0,...,N is a martingale. For r ∈ (d, u),
{S∗(t)}t=0,...,N is a martingale with respect to the probability measure Pp if and only if p = q,
where

q =
er − ed

eu − ed
.

Proof. By definition, {S∗(t)}t=0,...,N is a martingale if and only if

Ep[S∗(t)|S∗(0), . . . , S∗(t− 1)] = S∗(t− 1), for all t = 1, . . . , N.

Taking the expectation conditional to S∗(0), . . . , S∗(t− 1) is clearly the same as taking the
expectation conditional to S(0), . . . , S(t− 1), hence the above equation is equivalent to

Ep[S(t)|S(0), . . . , S(t− 1)] = erS(t− 1), for all t = 1, . . . , N, (10)

where we canceled out a factor e−rt in both sides of the equation. Moreover

Ep[S(t)|S(0), . . . , S(t− 1)] = Ep[
S(t)

S(t− 1)
S(t− 1)|S(0), . . . , S(t− 1)]

= S(t− 1)Ep[
S(t)

S(t− 1)
|S(0), . . . , S(t− 1)],

where we used that S(t − 1) is measurable with respect to the conditioning variables and
thus it can be taken out from the conditional expectation (see property 5 in Theorem 0.2).
As

S(t)/S(t− 1) =

{
eu with prob. p
ed with prob. 1− p

is independent of S(0), . . . , S(t− 1), then by Theorem 0.2(2) we have

Ep[
S(t)

S(t− 1)
|S(0), . . . , S(t− 1)] = Ep[

S(t)

S(t− 1)
] = eup+ ed(1− p).

Hence (10) holds if and only if eup+ ed(1− p) = er. Solving in p ∈ (0, 1) we find p = q and
the condition 0 < q < 1 is then equivalent to r ∈ (d, u).

Due to Theorem 0.4, Pq is called martingale probability measure. Moreover, since
martingales have constant expectation, then

Eq[S(t)] = S0e
rt. (11)

Thus in the martingale probability measure one expects the same return on the stock as on
the risk-free asset. For this reason, Pq is also called risk-neutral probability.
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Self-financing portfolios

A portfolio process in a binomial market is a stochastic process {(hS(t), hB(t))}t=0,...,N

such that, for t = 1, . . . , N , (hS(t), hB(t)) corresponds to the portfolio position (number of
shares) on the stock and the risk-free asset held in the interval (t− 1, t]. A positive number
of shares corresponds to a long position on the asset, while a negative number of shares
corresponds to a short position. As portfolio positions held for one instant of time only are
meaningless, we use the convention hS(0) = hS(1), hB(0) = hB(1), that is to say, hS(1), hB(1)
is the portfolio position in the closed interval [0, 1]. We always assume that the portfolio
process is predictable from {S(t)}t=0,...,N , i.e., there exists functions Ht : (0,∞)t → R2 such
that (hS(t), hB(t)) = Ht(S(0), . . . , S(t−1)). Thus the decision on which position the investor
should take in the interval (t− 1, t] depends only on the information available at time t− 1.
The value of the portfolio process is the stochastic process {V (t)}t=0,...,N given by

V (t) = hB(t)B(t) + hS(t)S(t), t = 0, . . . , N. (12)

A portfolio process {(hS(t), hB(t))}t=0,...,N is said to be self-financing if

V (t− 1) = hB(t)B(t− 1) + hS(t)S(t− 1), t = 1, . . . , N, (13)

while it is said to generate the cash flow C(t− 1) if

V (t− 1) = hB(t)B(t− 1) + hS(t)S(t− 1) + C(t− 1), t = 1, . . . , N. (14)

Recall that C(t) > 0 corresponds to cash withdrawn from the portfolio at time t while
C(t) < 0 corresponds to cash added to the portfolio at time t. The self-financing property
means that no cash is ever added or withdrawn from the portfolio.

Theorem 0.5. Let {(hS(t), hB(t))}t=0,...,N be a self-financing predictable portfolio process
with value {V (t)}t=0,...,N . Then the discounted portfolio value {V ∗(t)}t=0,...,N is a martingale
in the risk-neutral probability measure. Moreover the following identity holds:

V ∗(t) = Eq[V ∗(N)|S(0), . . . , S(t)], t = 0, . . . , N. (15)

Proof. The martingale claim is

Eq[V ∗(t)|V ∗(0), . . . , V ∗(t− 1)] = V ∗(t− 1).

We now show that this follows by

Eq[V ∗(t)|S(0), . . . , S(t− 1)] = V ∗(t− 1). (16)

In fact, computing the expectation of (16) conditional to V ∗(0), . . . , V ∗(t− 1), we obtain

V ∗(t− 1) = Eq[V ∗(t− 1)|V ∗(0), . . . , V ∗(t− 1)]

= Eq
[
Eq[V ∗(t)|S(0), . . . , S(t− 1)]|V ∗(0), . . . , V ∗(t− 1)

]
= Eq[V ∗(t)|V ∗(0), . . . , V ∗(t− 1)],
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where we have used property 3 of Theorem 0.2 in the first equality and property 6 in the last
equality. The latter is possible because V ∗(t) is measurable with respect to S(0), . . . , S(t).
Now we claim that (16) also implies the formula (15). We argue by backward induction.
Letting t = N in (16) we see that (15) holds at t = N − 1. Assume now that (15) holds at
time t+ 1, i.e.,

V ∗(t+ 1) = Eq[V ∗(N)|S(0), . . . , S(t+ 1)].

Taking the expectation conditional to S(0), . . . , S(t) we have, by (16),

V ∗(t) = Eq[V ∗(t+ 1)|S(0), . . . , S(t)] = Eq
[
Eq[V ∗(N)|S(0), . . . , S(t+ 1)]|S(0), . . . , S(t)

]
= Eq[V ∗(N)|S(0), . . . , S(t)].

Hence (15) holds at time t and so (16) ⇒ (15), as claimed. Finally we prove (16). As
B(t) = B(t− 1)er, (13) gives

hB(t)B(t) = erV (t− 1)− hS(t)S(t− 1)er.

Replacing in (12) we find

V (t) = erV (t− 1) + hS(t)[S(t)− S(t− 1)er].

Taking the expectation conditional to S(0), . . . , S(t− 1) we obtain

Eq[V (t)|S(0), . . . S(t− 1)] = erEq[V (t− 1)|S(0), . . . , S(t− 1)]

+ Eq[hS(t)(S(t)− S(t− 1)er)|S(0), . . . , S(t− 1)]. (17)

As V (t − 1) and hS(t) are measurable with respect to the conditioning variables we have
Eq[V (t− 1)|S(0), . . . , S(t− 1)] = V (t− 1), as well as

Eq[hS(t)(S(t)− S(t− 1)er)|S(0), . . . , S(t− 1)]

= hS(t)Eq[S(t)− S(t− 1)er|S(0), . . . , S(t− 1)]

= hS(t)
(
Eq[S(t)|S(0), . . . , S(t− 1)]− S(t− 1)er

)
= 0,

where in the last step we used that {S∗(t)}t=0,...,N is a martingale in the risk-neutral proba-
bility. Going back to (17) we obtain

Eq[V (t)|S(0), . . . S(t− 1)] = erV (t− 1),

which is the same as (16).

Arbitrage portfolios

A portfolio process {(hS(t), hB(t)}t=0,...,N invested in the binomial market is called an arbi-
trage portfolio process if it is predictable and if its value V (t) satisfies
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1) V (0) = 0;

2) V (N,ω) ≥ 0, for all ω ∈ ΩN ;

3) There exists ω∗ ∈ ΩN such that V (N,ω∗) > 0.

Theorem 0.6. Assume d < r < u, i.e., assume the existence of a risk-neutral probabil-
ity measure for the binomial market. Then the binomial market is free of self-financing
arbitrages.

Proof. Assume that {hS(t), hB(t)}t=0,...,N is a self-financing arbitrage portfolio process. Then
V (0) = V ∗(0) = 0 and since martingales have constant expectation then Eq[V ∗(t)] = 0, for
all t = 0, 1, . . . , N . As V (N) ≥ 0, then V ∗(N) ≥ 0 and Theorem 0.1(2) entails V ∗(N,ω) = 0
for any sample ω ∈ ΩN . Hence V (N,ω) = 0, for all ω ∈ ΩN , contradicting the assumption
that the portfolio is an arbitrage.

Remark 0.3. As shown in [2], the existence of a risk-neutral probability measure in not
only sufficient but also necessary for the absence of self-financing arbitrages in the binomial
market. More precisely, if r /∈ (d, u) one can construct self-financing arbitrage portfolios
in the market. Hence the binomial market is free of self-financing arbitrages if and only if
it admits a risk-neutral probability measure. The latter result is valid for any discrete (or
even continuum) market model and is known as the first fundamental theorem of asset
pricing.

Risk neutral pricing formula for European derivatives in the bino-
mial model

Let Y : ΩN → R be a random variable and consider the European-style derivative with
pay-off Y at maturity time T = N . This means that the derivative can only be exercised
at time t = N . For standard European derivatives Y is a deterministic function of S(N),
while for non-standard derivatives Y is a deterministic function of S(0), . . . , S(N). Let ΠY (t)
be the binomial fair price of the derivative a time t. By definition, ΠY (t) equals the value
V (t) of self-financing, hedging portfolios. In particular, ΠY (t) is a random variable and so
{ΠY (t)}t=0,...,N is a stochastic process. Using the hedging condition V (N) = Y (which means
V (N,ω) = Y (ω), for all ω ∈ ΩN)) and (15), we have the following formula for the fair price
at time t of the financial derivative:

ΠY (t) = e−r(N−t)Eq[Y |S(0), . . . , S(t)]. (18)

Equation (18) is known as risk-neutral pricing formula and it is the cornerstone of
options pricing theory. It holds not only for the binomial model but for any discrete—or
even continuum —pricing model for financial derivatives. It is used for standard as well as
non-standard European derivatives. In the special case t = 0, (18) reduces to

ΠY (0) = e−rNEq[Y ]. (19)
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Remark 0.4. We may interpret (19) as follows: the current (at time t = 0) fair value of the
derivative is our expectation on the future payment of the derivative (the pay-off) expressed
in terms of the future value of money (discounted pay-off Y ∗ = e−rNY ). The expectation has
to be taken with respect to the martingale probability measure, i.e., ignoring any (subjective
or illegal2) estimate on future movements of the stock price (except for the loss in value due
to the time-devaluation of money).

Example. Consider a 2-period binomial model with the following parameters

eu =
4

3
, ed =

2

3
, r = 0, p ∈ (0, 1).

Assume further that S0 = 36. Consider the European derivative with pay-off

Y = (S(2)− 28)+ − 2(S(2)− 32)+ + (S(2)− 36)+

and time of maturity T = 2. According to (19), the fair value of the derivative at t = 0 is

ΠY (0) = e−2rEq[Y ] = Eq[(S(2)− 28)+]− 2Eq[(S(2)− 32)+] + Eq[(S(2)− 36)+].

By the market parameters we find q = 1/2. Hence the distribution of S(2) in the risk-neutral
probability measure is

Pq(S(2) = s) =


1/4 if s = 16 of s = 64
1/2 if s = 32
0 otherwise

.

It follows that

Eq[(S(2)− 28)+] = 11, Eq[(S(2)− 32)+] = 8, Eq[(S(2)− 36)+] = 7,

hence ΠY (0) = 2.

By definition of expectation in the N -coin toss probability space, see (2), the risk-neutral
pricing formula (19) for the standard European derivative with pay-off Y = g(S(N)) and
maturity T = N takes the explicit form

ΠY (0) = e−rN
N∑
k=0

(
N

k

)
qk(1− q)kg(S0e

ku+(N−k)d).

However this formula is not very convenient for numerical computations, because the bino-
mial coefficient

(
N
k

)
will reach very large values for even a relative small number of steps (e.g.,(

50
25

)
is of order 1014). A much more convenient way to compute numerically the binomial

price of standard European derivatives is by using the recurrence formula ΠY (N) = Y and

ΠY (t) = e−r(qΠu
Y (t+ 1) + (1− q)Πd

Y (t+ 1)), t = 0, . . . , N − 1, (20)

2Trading in the market using privileged information is a crime (insider trading).
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where Πu
Y (t) is the binomial price of the derivative at time t assuming that the stock price

goes up at time t, i.e.,

Πu
Y (t) = e−r(N−t)Eq[Y |S(0), . . . , S(t− 1), S(t) = S(t− 1)eu]

and similarly one defines Πd
Y (t) by replacing “up” with “down”. The formula (20) follows

immediately by (18) and the definition of conditional expectation.

Remark 0.5. It can be shown that any European derivative in the binomial market can
be hedged by a self-financing portfolio invested in the underlying stock and the risk-free
asset, see [2]. For this reason the binomial market is called a complete market. In fact,
the second fundamental theorem of asset pricing states that market completeness
is equivalent to the uniqueness of the risk-neutral probability measure. An arbitrage free
market is said to be incomplete if the risk-neutral measure is not unique. When the market
is incomplete the price of European derivatives is not uniquely defined and moreover there
exist European derivatives which cannot be hedged by self-financing portfolios. An example
of incomplete market is the trinomial model discussed in the project in Chapter 2.

Implementation of the binomial model

For real world applications the binomial model must be properly rescaled in time. Precisely,
let T > 0 be the maturity of a European derivative and consider the uniform partition of
the interval [0, T ] with size h > 0:

0 = t0 < t1 < · · · < tN = T, ti − ti−1 = h, for all i = 1, . . . , N.

The binomial stock price on the given partition is given by S(0) = S0 > 0 and

S(ti) =

{
S(ti−1)eu, with probability p,
S(ti−1)ed, with probability 1− p, i = 1, . . . , N,

while

B(ti) = B0e
rhi.

The instantaneous mean of log-return and the instantaneous variance of the binomial
stock price are defined respectively by

α =
1

h
Ep[logS(ti)− logS(ti−1)] =

1

h
[pu+ (1− p)d],

σ2 =
1

h
Varp[logS(ti)− logS(ti−1)] =

(u− d)2

h
p(1− p).

The parameter σ itself is called instantaneous volatility. Note carefully that these pa-
rameters are constant in the standard binomial model and that they are computed with
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the physical probability (and not with the risk-neutral probability). Inverting the equations
above we obtain

u = αh+ σ

√
1− p
p

√
h, d = αh− σ

√
p

1− p
√
h. (21)

In the applications of the binomial model it is customary to give the parameters α, σ and
then compute u, d using (21). The risk-neutral probability then becomes

q =
erh − eαh−σ

√
p

1−p
√
h

e
αh+σ

√
1−p
p

√
h − eαh−σ

√
p

1−p
√
h
. (22)

The binomial model is trustworthy only for h very small compared to T (i.e., N >> 1).

The following Matlab code defines a function EuroZeroBin(g, T, s, alpha, sigma, r, p, N) that
computes the initial price of the standard European derivative with pay-off Y = g(S(T ))
using (20). The variable s is the initial price S0 of the stock. The function also checks that
q ∈ (0, 1), i.e., that the risk-neutral probability is well defined (and thus the market is free
of self-financing arbitrages). If not a message appears which asks to increase the number of
steps N .

function Pzero=EuroZeroBin(g,T,s,alpha,sigma,r,p,N)

h=T/N;

u=alpha*h+sigma*sqrt(h)*sqrt((1-p)/p);

d=alpha*h-sigma*sqrt(h)*sqrt(p/(1-p));

qu=(exp(r*h)-exp(d))/(exp(u)-exp(d));

qd=1-qu;

if (qu<0 || qd<0)

display(’Error: the market is not arbitrage free. Increase the value of N’);

Pzero=0;

return

end

S=zeros(N+1,1);

P=zeros(N+1);

S=s*exp((N-[0:N])*u+[0:N]*d).’;

P(:,N+1)=g(S);

for j=N:-1:1

for i=1:j

P(i,j)=exp(-r*h)*(qu*P(i,j+1)+qd*P(i+1,j+1));

end

end

As shown in [2], the binomial price of the derivative is very weakly dependent on the pa-
rameter α ∈ R and p ∈ (0, 1) (provided N is sufficiently large, say N ≈ 10000). Hence one
normally chooses α = 0 and p = 1/2 in the implementation of the binomial model.
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0.3 Probability theory on uncountable sample spaces

In this section we assume that Ω is uncountable (e.g., Ω = R). In this case there is no general
procedure to construct a probability space, but only an abstract definition. In particular
a probability measure P on events A ⊆ Ω is defined only axiomatically by requiring that
0 ≤ P(A) ≤ 1, P(Ω) = 1 and that, for any sequence of disjoint events A1, A2, . . . , it should
hold

P(A1 ∪ A2 ∪ . . . ) = P(A1) + P(A2) + . . .

Moreover it is not necessary—and almost never convenient—to assume that P is defined for
all events A ⊂ Ω. We denote by F the set of events (i.e., subsets of Ω) which have a well
defined probability satisfying the properties above.

Example. Let Ω = R. We say that A ⊆ R is a Borel set if it can be written as the union
(or intersection) of countably many open (or closed) intervals. Let F be the collection of all
Borel sets. Let p : R→ R be a continuous non-negative function such that∫

R
p(ω) dω = 1.

Then P : F → [0, 1] given by

P(A) =

∫
A

p(ω) dω (23)

defines a probability. If X : R → R is a random variables, the expectation of X in the
probability measure (23) is given by

E[X] =

∫
R
X(ω)p(ω) dx, (24)

provided the integral converges.

Fortunately for most applications (and in particular for those in financial mathematics) the
knowledge of the full probability space is usually not necessary, as in the applications one
is typically concerned only with random variables and their distributions, rather than with
generic events. More precisely, we are only interested in assigning a probability to events of
the form {X ∈ I}, where X is a random variable on the (abstract) probability space and
I ⊂ R, that is to say, events which can be resolved by one (or more) random variables.

Remark 0.6. Even though Ω is uncountable, the image of X : Ω → R need not be
uncountable (e.g., X could be piecewise constant). To avoid technical complications we
assume in the following that Im(X) does not contain isolated points. We shall refer to these
random variables as continuum random variables. The only case of non-continuum
random variable that we allow in this section is when X is a deterministic constant, in which
case the image of X consists of one real number only.

The probability P(X ∈ I) can be computed explicitly when X has a density.
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Definition 0.2. Let fX : R → [0,∞) be a continuous function, except possibly on finitely
many points. A continuum random variable X : Ω→ R is said to have probability density
fX if

P(X ∈ A) =

∫
A

fX(x) dx,

for all Borel sets A ⊆ R.

Note that the density fX satisfies ∫
R
fX(x) dx = 1

and the cumulative distribution FX(x) = P(X ≤ x) satisfies

FX(x) =

∫ x

−∞
fX(y) dy, for all x ∈ R, hence fX =

dFX
dx

.

Example. A random variable X : Ω → R is said to be a normal random variable with
mean m ∈ R and variance σ2 > 0 if it admits the density

fX(x) =
1√

2πσ2
exp

(
−|x−m|

2

2σ2

)
. (25)

We denote N (m,σ2) the set of all such random variables. A variable X ∈ N (0, 1) is called
a standard normal random variable. The cumulative distribution of standard normal
random variables is denoted by Φ(x) and is called the standard normal distribution, i.e.,

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
y2 dy.

The following theorem shows that the probability density, when it exists, provides all the
relevant statistical information on a random variable.

Theorem 0.7. The following holds for all sufficiently regular3 functions g : R→ R:

(i) Let X : Ω→ R be a random variable with density fX . Then for all Borel sets A ⊆ R,

P(g(X) ∈ A) =

∫
x:g(x)∈A

fX(x) dx.

(ii) Let X : Ω→ R be a random variable with density fX . Then

E[g(X)] =

∫
R
g(y)fX(y) dy.

3In particular, for all functions g such that the integrals in the theorem are well-defined.
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Moreover the properties 1,2,3 in Theorem 0.1 still hold for continuum random variables.

By (ii) in Theorem 0.7, the expectation and the variance of a continuum random variable X
with density fX are given by

E[X] =

∫
R
xfX(x) dx, Var[X] =

∫
R
x2fX(x) dx−

(∫
R
xfX(x) dx

)2

. (26)

Applying (26) to normal variables we obtain

X ∈ N (m,σ2) =⇒ E[X] = m, Var[X] = σ2. (27)

Joint probability density

Definition 0.3. Two continuum random variables X, Y : Ω→ R are said to have the joint
probability density fX,Y : R2 → [0,∞), if

P(X ∈ A, Y ∈ B) =

∫
A

∫
B

fX,Y (x, y) dx dy,

for all Borel sets A,B ⊆ R.

Note that if fX,Y is a joint probability density, then∫
R

∫
R
fX,Y (x, y) dx dy = 1.

Moreover if we define the joint cumulative distribution as FX,Y (x, y) = P(X ≤ x, Y ≤ y)
then

fX,Y (x, y) = ∂x∂yFX,Y (x, y).

When X, Y have the joint density fX,Y (x, y), the random variables X, Y admit the densities

fX(x) =

∫
R
fX,Y (x, y) dy, fY (y) =

∫
R
fX,Y (x, y) dx.

Example: Jointly normally distributed random variables. Let m ∈ R2 and C =
(Cij)i,j=1,2 be a symmetric, positive definite 2×2 matrix. Two random variables X1, X2 :
Ω→ R are said to be jointly normally distributed with mean m and covariance matrix C
if they admit the joint density

fX1,X2(x) =
1√

(2π)2 detC
exp

(
−1

2
(x−m)C−1(x−m)

)
, for all x = (x1, x2) ∈ R2.

(28)

The following theorem generalizes Theorem 0.7 in the presence of two variables.
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Theorem 0.8. Let X, Y : Ω→ R be random variables with joint density fX and g : R2 → R.

(i) For all Borel sets A ⊆ R there holds

P(g(X, Y ) ∈ A) =

∫
(x,y):g(x,y)∈A

fX,Y (x, y) dx dy.

(ii) There holds

E[g(X, Y )] =

∫
R2

g(x, y)fX,Y (x, y) dx dy.

By (ii) of Theorem 0.8, if X1, X2 have the joint density fX1,X2 , then the covariance of X1, X2

can be computed as

Cov(X1, X2) = E[X1X2]− E[X1]E[X2]

=

∫
R2

x1x2fX1,X2(x1, x2) dx1 dx2

−
∫
R2

x1fX1,X2(x1, x2) dx1 dx2

∫
R2

x2fX1,X2(x1, x2) dx1 dx2.

In particular, if X1, X2 are jointly normal distributed with mean m ∈ R2 and covariance
matrix C = (Cij)i,j=1,2, we find

m = (m1,m2), Cij = Cov(Xi, Xj). (29)

The following result on the linear combination of independent normal random variables will
play an important role for the project in multi-asset options in Chapter 5.

Theorem 0.9. Let X1, X2 ∈ N (0, 1) be independent and a, b, c, d ∈ R. Then aX1 + bX2 ∈
N (0, a2 + b2). Moreover if

Y1 = aX1 + bX2, Y2 = cX1 + dX2,

and if the matrix

A =

(
a b
c d

)
is invertible, then Y1, Y2 are jointly normally distributed with zero mean and covariant matrix
C = AAT .

Stochastic processes. Martingales

Let Ω be an uncountable sample space. A stochastic process is a one parameter family
{X(t)}t≥0 of (continuum) random variables X(t) : Ω → R. We denote X(t, ω) = X(t)(ω).
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The parameter t is referred to as the time variable, since this is what it represents in the
applications that we have in mind. For each ω ∈ Ω fixed, the function t→ X(t, ω) is called
a path of the stochastic process. If the paths are all the same for all ω ∈ Ω, then we say that
X(t) is a deterministic function of time.

Martingale stochastic processes play a fundamental role in options pricing theory4. To define
martingales on uncountable sample spaces, let FX(t) denote the information accumulated
by “looking” at the stochastic process up to time t, i.e., the collection of events resolved by
X(s) for 0 ≤ s ≤ t. Intuitively, the stochastic process {X(t)}t≥0 is a martingale if, based on
the information contained in FX(s), our “best estimate” on X(t) for t > s is X(s), i.e., we
are not able to estimate whether the process will raise or fall in the interval [s, t] with the
information available at time s. This intuitive definition is encoded in the formula

E[X(t)|FX(s)] = X(s), 0 ≤ s ≤ t, (30)

which generalizes the definition (3) of martingales in finite probability theory. The left
hand side of (30) is the conditional expectation of X(t) with respect to the information
FX(s), whose precise definition is not needed here. It can be shown that (30) implies that
martingales have constant expectation.

Brownian motion

Next we recall the definition of the most important of all stochastic processes.

Definition 0.4. A Brownian motion, or Wiener process, is a stochastic process {W (t)}t≥0

with the following properties:

1. For all 5 ω ∈ Ω, the paths are continuous (i.e., t → W (t, ω) is a continuous function)
and W (0, ω) = 0;

2. For all 0 = t0 < t1 < t2 < . . . , the increments

W (t1) = W (t1)−W (t0), W (t2)−W (t1), . . . ,

are independent random variables and

E[W (ti+1)−W (ti)] = 0, Var[W (ti+1)−W (ti)] = ti+1 − ti, for all i = 0, 1, . . . ;

3. The increments are normally distributed, that is to say, for all 0 ≤ s < t,

P(W (t)−W (s) ∈ A) =
1√

2π(t− s)

∫
A

e−
y2

2(t−s) dy,

for all Borel sets A ⊆ R.
4In fact, this theory is also called martingale pricing theory in some literature.
5More precisely, for all ω ∈ Ω up to a set of zero probability.
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It can be shown that Brownian motions exist, yet a formal construction is technically quite
difficult and beyond the purpose of this text.

Remark 0.7. Since the definition of Brownian motion depends on the probability measure P,
then a stochastic process {W (t)}t≥0 which is a Brownian motion in the probability measure

P will in general not be a Brownian motion in another probability measure P̃. When we
want to emphasize that {W (t)}t≥0 is a Brownian motion in the probability measure P, we
shall say that {W (t)}t≥0 is a P-Brownian motion.

Remark 0.8. Letting s = 0 in property 3 in Definition 0.4 we obtain that W (t) ∈ N (0, t),
for all t > 0. In particular, W (t) has zero expectation for all times. It can also be shown
that Brownian motions are martingales.

The following result is used a few times in the following chapters.

Theorem 0.10. Let g : (0,∞)→ R be a differentiable function and let

X(t) = g(t)W (t)−
∫ t

0

g′(s)W (s) ds.

Then

X(t) ∈ N (0,∆(t)), ∆(t) =

∫ t

0

g(s)2 ds.

Sketch of the proof. We have

E[X(t)] = g(t)E[W (t)]−
∫ t

0

g′(s)E[W (s)] ds = 0,

Var[X(t)] = E[X(t)2] = g(t)2E[W (t)2] + E

[(∫ t

0

g′(s)W (s) ds

)2
]

− 2g(t)E
[∫ t

0

g′(s)W (t)W (s) ds

]
= g(t)2t+

∫ t

0

∫ t

0

g′(s)g′(τ)Cov(W (s),W (τ)) dτ ds

− 2g(t)

∫ t

0

g′(s)Cov(W (s),W (t)) ds.

Using Cov(W (s),W (t)) = min(s, t), and after some technical but straightforward calcula-
tion, we obtain Var[X(t)] = ∆(t). To show that X(t) is normally distributed, let {t0 =
0, . . . , tn = t} be a uniform partition of the interval [0, t] and consider the Riemann sum
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approximation of X(t):

Xn(t) = g(tn)W (tn)−
n∑
i=1

(g(ti)− g(ti−1)W (ti)

= −
n−1∑
i=1

g(ti)W (ti) +
n∑
i=1

g(ti−1)W (ti)

= −
n−1∑
i=0

g(ti)W (ti) +
n−1∑
j=0

g(tj)W (tj+1),

where in the last step we used W (t0) = W (0) = 0 in the first sum and made the change of
index j = i− 1 in the second sum. Hence

Xn(t) =
n−1∑
i=0

g(ti)(W (ti+1)−W (ti)).

Thus Xn(t) is normally distributed because it is a linear combination of the independent
and normally distributed random variables W (ti+1) − W (ti). It can be shown that this
property carries over in the limit n → ∞ and since Xn(t) → X(t) in this limit the proof is
completed.

Remark 0.9. By using the formal identity d(g(t)W (t)) = g′(t)W (t)dt+ g(t)dW (t), as well
as
∫ t

0
d(g(s)W (s)) = g(t)W (t), we can write the definition of X(t) in Theorem 0.10 as

X(t) =

∫ t

0

g(s)dW (s),

which is called Itô integral of the deterministic function g(t).

Equivalent probability measures. Girsanov theorem

One further technical complication arising for uncountable sample spaces is the existence of
non-trivial events with zero measure, e.g., the event {W (t) = 0} that the Brownian motion
W (t) takes value zero when t > 0. We shall need to consider the concept of equivalent
probability measures:

Definition 0.5. Two probability measure P, P̃ on the events A ∈ F are said to be equivalent
if P(A) = 0⇔ P̃(A) = 0.

Hence equivalent probability measures agree on which events are impossible. Note that in a
finite probability space all probability measures are equivalent, as in the finite case the empty
set is the only event with zero probability. The following important theorem characterizes
the relation between equivalent probability measures on uncountable sample spaces and is
known as the Radon-Nikodým theorem. We denote IA the characteristic function of the
set A ∈ F , i.e., the random variable taking value IA(ω) = 1 if ω ∈ A and zero otherwise.
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Theorem 0.11 (Radon-Nikodým theorem). Let P : F → [0, 1] be a probability measure.

Then P̃ : F → [0, 1] is a probability measure equivalent to P if and only if there exists a

random variable Z : Ω → R such that Z > 0 (with probability 1), E[Z] = 1 and P̃(A) =

E[ZIA]. Moreover if P and P̃ are equivalent then Ẽ[X] = E[ZX], for all random variables
X : Ω→ R.

For example, assume Ω = R and that P and P̃ are defined as in (23), namely

P(A) =

∫
A

p(ω) dω, P̃(A) =

∫
A

p̃(ω) dω,

where A is a Borel set and p, p̃ are two continuous non-negative functions such that∫
R
p(ω) dω =

∫
R
p̃(ω) dω = 1.

Then, according to Theorem 0.11 and (24), P and P̃ are equivalent if and only if there exists
a function Z : R→ R such that Z > 0, and

P̃(A) =

∫
A

p̃(ω) dω =

∫
R
Z(ω)IA(ω)p(ω) dω =

∫
A

Z(ω)p(ω) dω.

As the equality
∫
A
p̃(ω) dω =

∫
A
Z(ω)p(ω) dω has to be satisfied for all Borel sets A ⊂ R,

then p̃(ω) = Z(ω)p(ω) must hold for all ω ∈ R (up to a set with zero probability).

Theorem 0.12 (and Definition). Let {W (t)}t≥0 be a P-Brownian motion. Given θ ∈ R
and T > 0 define

Zθ = e−θW (T )− 1
2
θ2T . (31)

Then Pθ(A) = E[ZθIA] defines a probability measure equivalent to P, which is called Gir-
sanov’s probability with parameter θ ∈ R. for all Borel sets A ⊆ R.

Proof. The proof follows immediately from Theorem 0.11, since the random variable (31)
satisfies Zθ > 0 and

E[Zθ] = E[e−θW (T )− 1
2
θ2T ] =

∫
R
e−θx−

1
2
θ2T e−

x2

2T

√
2πT

dx = 1,

where we used the density of the normal random variable W (T ) ∈ N (0, T ) to compute the
expectation of Zθ in the probability measure P (see Theorem 0.7(ii)).

Note that the Girsanov probability measure Pθ depend also on T , but this is not reflected in
our notation. In the following we denote by Eθ[·] the expectation computed in the probability
measure Pθ for θ 6= 0. When θ = 0 then Pθ = P, in which case the expectation is denoted
as usual by E[·]. By Theorem 0.11 we have Eθ[X] = E[ZθX], for all random variables
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X : Ω → R. Moreover we now show that Eθ[W (t)] = −θt. In fact by the Radon-Nikodým
theorem we have

Eθ[W (t)] = E[ZθW (t)] = E[e−θW (T )− 1
2
θ2TW (t)].

Adding and subtracting W (t) in the exponent of the exponential function we have

Eθ[W (t)] = E[e−θ(W (T )−W (t))− 1
2
θ2T e−θW (t)W (t)] = E[e−θ(W (T )−W (t))− 1

2
θ2T ]E[e−θW (t)W (t)],

where in the last step we used that the random variables X = e−θ(W (T )−W (t))− 1
2
θ2T and

Y = e−θW (t)W (t) are independent (being functions of the independent random variables
W (T ) −W (t) and W (t)). Using W (T ) −W (t) ∈ N (0, T − t) and W (t) ∈ N (0, t), we can
compute the expectations of X and Y as

E[X] = e−
1
2
θ2T 1√

2π(T − t)

∫
R
e−θx−

x2

2(T−t) dx = e−
θ2

2
t,

E[Y ] =
1√
2πt

∫
R
e−θx−

x2

2t x dx = −e
θ2

2
tθt.

Hence Eθ[W (t)] = E[X]E[Y ] = −θt, as claimed. It follows that {W (t)}t≥0 is not a Pθ-
Brownian motion, since Brownian motions, by definition, have zero expectation at any time.
Now we can state a fundamental theorem in probability theory with deep applications in
financial mathematics, namely Girsanov’s theorem6.

Theorem 0.13. Let {W (t)}t≥0 be a P-Brownian motion. Given θ ∈ R and T > 0, let Pθ be
the Girsanov probability measure with parameter θ introduced in Theorem 0.12. Define the
stochastic process {W (θ)(t)}t≥0 by

W (θ)(t) = W (t) + θt. (32)

Then {W (θ)(t)}t≥0 is a Pθ-Brownian motion.

Note carefully that {W (θ)(t)}t≥0 is not a P-Brownian motion, as it follows by the fact that
E[W (θ)(t)] = θt. In particular, according to the probability measure P, the stochastic process
{W (θ)(t)}t≥0 has a drift, i.e., a tendency to move up (if θ > 0) or down (if θ < 0). However
in the Girsanov probability this drift is removed, because, as shown before, Eθ[W (θ)(t)] =
Eθ[W (t)] + θt = 0.

Multi-dimensional Girsanov theorem

We conclude this section with a generalization of Girsanov’s theorem in the presence of
two independent Brownian motions. This generalization is important for the project on
multi-asset options in Chapter 5. We limit ourselves to state without proof the analogs of
Theorems 0.12 and 0.13 required for this purpose.

6Actually we consider only a special case of this theorem, which suffices for our purposes.
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Theorem 0.14 (and Definition). Let {W1(t)}t≥0, {W2(t)}t≥0 be P-independent Brownian
motions. Given θ = (θ1, θ2) ∈ R2 and T > 0 define

Zθ = e−θ1W1(T )−θ2W2(T )− 1
2

(θ21+θ22)T . (33)

Then Pθ(A) = E[ZθIA] defines a probability measure equivalent to P, which is called Gir-
sanov’s probability with parameters θ1, θ2 ∈ R.

Theorem 0.15. Let {W1(t)}t≥0, {W2(t)}t≥0 be P-independent Brownian motions. Given
θ = (θ1, θ2) ∈ R2 and T > 0, let Pθ be the Girsanov probability with parameters θ1, θ2

introduced in Theorem 0.14. Define the stochastic processes {W (θ)
1 (t)}t≥0, {W (θ)

2 (t)}t≥0 by

W
(θ)
1 (t) = W1(t) + θ1t, W

(θ)
2 (t) = W2(t) + θ2t (34)

Then {W (θ)
1 (t)}t≥0, {W (θ)

2 (t)}t≥0 are Pθ-independent Brownian motions.

0.4 Black-Scholes options pricing theory

In the binomial model the stock price at time t is a finite random variable S(t). In the Black-
Scholes model the stock price is a continuum random variable with image Im(S(t)) = (0,∞),
namely the geometric Brownian motion

S(t) = S0e
αt+σW (t). (35)

The probability P with respect to which {W (t)}t≥0 is Brownian motion is the physical (or
real-world) probability of the Black-Scholes market. Moreover α is the instantaneous
mean of log-return, σ is the instantaneous volatility and σ2 is the instantaneous
variance of the geometric Brownian motion

The geometric Brownian motion admits the density

fS(t)(x) =
H(x)√
2πσ2t

1

x
exp

(
−(log x− logS(0)− αt)2

2σ2t

)
, (36)

where H(x) is the Heaviside function. It can be shown that the binomial stock price
converges in distribution to the geometric Brownian motion in the time-continuum limit,
see [2].

The risk-neutral pricing formula in Black-Scholes markets

The purpose of this section is to introduce the definition of Black-Scholes price of European
derivatives from a probability theory point of view. Recall that the probabilistic formulation
of the binomial options pricing model is encoded in the risk-neutral pricing formula (18). Our
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goal is to derive a similar risk-neutral pricing formula (at time t = 0) for the time-continuum
Black-Scholes model.

Motivated by the approach for the binomial model, we first look for a probability measure
in which the the discounted stock price in Black-Scholes markets is a martingale (martingale
probability measure). It is natural to seek such martingale probability within the class
of Girsanov probabilities Pθ equivalent to the physical probability P which we defined in
Theorem 0.12. To this purpose we shall need the form of the density function of the geometric
Brownian motion in the probability measure Pθ.

Theorem 0.16. Let θ ∈ R, T > 0 and Pθ be the Girsanov probability measure equivalent to
the physical probability P. The geometric Brownian motion (35) has the following density in
the probability measure Pθ:

f
(θ)
S(t)(x) =

H(x)√
2πσ2t

1

x
exp

(
−(log x− logS0 − (α− θσ)t)2

2σ2t

)
. (37)

Proof. Since

S(t) = S0e
αt+σW (t) = S0e

(α−θσ)t+σW (θ)(t), W (θ)(t) = W (t) + θt

and since {W (θ)(t)}t≥0 is a Brownian motion in the probability measure Pθ (see Girsanov’s

Theorem 0.13), then the density f
(θ)
S(t) is the same as fS(t) with α replaced by α− θσ.

Let Eθ[·] denote the expectation in the measure Pθ. Recall that martingales have constant
expectation. Hence in the martingale (or risk-neutral) probability measure the expectation
of the discounted value of the stock must be constant, i.e., Eθ[S(t)] = S0e

rt. This condition
alone suffices to single out a unique possible value of θ.

Theorem 0.17. The identity Eθ[S(t)] = S0e
rt holds if and only if θ = q, where

q =
α− r
σ

+
σ

2
. (38)

Proof. Using the density (37) of S(t) in the measure Pθ and (26) we have

Eθ[S(t)] =

∫
R
xf

(θ)
S(t)(x) dx =

1√
2πσ2t

∫ ∞
0

exp

(
−(log x− logS0 − (α− θσ)t)2

2σ2t

)
dx.

With the change of variable y = log x−logS0−(α−θσ)t

σ
√
t

, dx = xσ
√
t dy, we obtain

Eθ[S(t)] =
S0√
2π
e(α−θσ)t

∫
R
e−

y2

2
+σ
√
ty dy = S0e

(α−θσ+σ2

2
)t 1√

2π

∫
R
e−

(y+σ
√
t)2

2 dy.

As 1√
2π

∫
R e
−x

2

2 dx = 1, the result follows.
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Even though the validity of Eθ[S(t)] = S0e
rt is only necessary for the discounted geometric

Brownian motion to be a martingale, one can show that the following result holds.

Theorem 0.18. The discounted value of the geometric Brownian motion stock price is a
martingale in the probability measure Pθ if and only if θ = q, where q is given by (38).

The previous discussion leads us to the following definition.

Definition 0.6. Given α ∈ R, σ > 0, r ∈ R and T > 0, the probability measure

Pq(A) = E[e−θW (T )− 1
2
θ2T IA], q =

α− r
σ

+
σ

2

is called the martingale probability, or risk-neutral probability, in the interval [0, T ]
of the Black-Scholes market with parameters α, σ, r.

Remark 0.10. In the risk-neutral probability the stock price is given by the geometric
Brownian motion

S(t) = S(0)e(r−σ
2

2
)t+σW (q)(t), (39)

where, by Girsanov’s theorem, W (q)(t) = W (t) + qt is a Brownian motion in the risk-neutral
probability. This follows by replacing α = r + qσ − 1

2
σ2 into (35).

At this point we have all we need to define the Black-Scholes price of European derivatives
at time t = 0 using the risk-neutral pricing formula.

Definition 0.7. The Black-Scholes price at time t = 0 of the European derivative with
pay-off Y at maturity T is given by the risk-neutral pricing formula

ΠY (0) = e−rTEq[Y ], (40)

i.e., it equals the expected value of the discounted pay-off in the risk-neutral probability mea-
sure of the Black-Scholes market.

In the case of standard European derivatives we can use the density of the geometric Brow-
nian motion in the risk-neutral probability measure to write the Black-Scholes price in the
following integral form.

Theorem 0.19. For the standard European derivative with pay-off Y = g(S(T )) at maturity
T > 0, the Black-Scholes price at time t = 0 can be written as ΠY (0) = v0(S0), where S0 is
the price of the underlying stock at time t = 0 and v0 : (0,∞)→ R is the pricing function
of the derivative at time t = 0, which is given by

v0(x) = e−rT
∫
R
g(xe(r−σ

2

2
)T+σ

√
Ty)e−

1
2
y2 dy√

2π
. (41)
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Proof. Replacing θ = q in (37) we obtain that the geometric Brownian motion has the
following density in the risk-neutral probability measure Pq:

f
(q)
S(t)(x) =

H(x)√
2πσ2t

1

x
exp

(
−

(log x− logS0 − (r − σ2

2
)t)2

2σ2t

)
. (42)

Using the density (42) for t = T in the risk-neutral pricing formula (40) we obtain

ΠY (0) = e−rTEq[Y ] = e−rTEq[g(S(T ))] =

∫
R
g(x)f

(q)
S(T )(x) dx

=
e−rT√
2πσ2t

∫ ∞
0

g(x)

x
exp

(
−

(log x− logS0 − (r − σ2

2
)t)2

2σ2t

)
dx.

With the change of variable y = log x−logS0−(α−θσ)t

σ
√
t

we obtain

ΠY (0) = e−rT
∫
R
g(S0e

(r−σ
2

2
)T+σ

√
Ty)e−

1
2
y2 dy√

2π
= v0(S0),

as claimed.

Remark 0.11. Of course we are tacitly assuming that the pay-off function g is such that
the integral in the right hand side of (41) is finite.

For instance, in the case of the European call option with strike K and maturity T , for which
the pay-off function is g(z) = (z −K)+, Theorem 0.19 gives

Πcall(0) = C0(S0, K, T ), C0(x,K, T ) = xΦ(d1)−Ke−rTΦ(d2) (43a)

where Φ is the standard normal distribution and

d2 =
log x

K
+ (r − 1

2
σ2)T

σ
√
T

, d1 = d2 + σ
√
T . (43b)

Definition 0.7 is only valid at time t = 0. The risk-neutral pricing formula for t > 0 is

ΠY (t) = e−r(T−t)Eq[Y |FS(t)], (44)

which generalizes (18) to the time continuum case. The right hand side of (44) is the expec-
tation of the discounted pay-off in the risk-neutral probability measure conditional to the
information available at time t, which in a Black-Scholes market is determined by the history
of the stock price up to time t. It can be shown that in the case of the standard European
derivative with pay-off Y = g(S(T )) at maturity T , the risk-neutral pricing formula (44)
entails that the Black-Scholes price at time t ∈ [0, T ] can be written in the integral form

ΠY (t) = v(t, S(t)), where v(t, x) =
e−rτ√

2π

∫
R
g
(
xe(r−σ

2

2
)τeσ

√
τ y
)
e−

y2

2 dy, τ = T − t. (45)

Hence the pricing function v(t, x) of the derivative at time t is the same as the pricing
function (41) at time t = 0 but with maturity T replaced by the time τ left to maturity,
which is rather intuitive.
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0.5 The Monte Carlo method

The Monte Carlo method is, in its simplest form, a numerical method to compute the
expectation of a random variable. Its mathematical validation is based on the Law of
Large Numbers, which states the following: Suppose {Xi}i≥1 is a sequence of i.i.d. random
variables with expectation E[Xi] = µ. Then the sample average of the first n components of
the sequence, i.e.,

X =
1

n
(X1 +X2 + · · ·+Xn),

converges (in probability) to µ as n→∞.

The law of large numbers can be used to justify the fact that if we are given a large number
of independent trials X1, . . . , Xn of the random variable X, then

E[X] ≈ 1

n
(X1 +X2 + · · ·+Xn).

To measure how reliable is the approximation of E[X] given by the sample average, consider
the standard deviation of the trials X1, . . . , Xn:

sX =

√√√√ 1

n− 1

n∑
i=1

(X −Xi)2.

A simple application of the Central Limit Theorem proves that the random variable

µ−X
sX/
√
n

converges in distribution to a standard normal random variable. We use this result to show
that the true value µ of E[X] has about 95% probability to be in the interval

[X − 1.96
s√
n
,X + 1.96

s√
n

].

Indeed, for n large,

P
(
−1.96 ≤ µ−X

sX/
√
n
≤ 1.96

)
≈
∫ 1.96

−1.96

e−x
2/2 dx√

2π
≈ 0.95.

An application to Black-Scholes theory

Using the Monte Carlo method and the risk-neutral pricing formula (19), we can approximate
the Black-Scholes price at time t = 0 of the European derivative with pay-off Y and maturity
T > 0 with the sample average

ΠY (0) = e−rT
Y1 + . . . Yn

n
, (46)
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where Y1, . . . , Yn is a large number of independent trials of the pay-off. Each trial Yi is
determined by a path of the stock price. Letting 0 = t0 < t1 < · · · < tN = T be a partition
of the interval [0, T ] with size ti − ti−1 = h, we may construct a sample of n paths of the
geometric Brownian motion on the given partition with the following simple Matlab function:

function Path=StockPath(s,sigma,r,T,N,n)

h=T/N;

W=randn(n,N);

q=ones(n,N);

Path=s*exp((r-sigma^2/2)*h.*cumsum(q’)+sigma*sqrt(h)*cumsum(W’));

Path=[s*ones(1,n);Path];

Note carefully that the stock price is modeled as a geometric Brownian motion with mean of
log return α = r − σ2/2, which means that the geometric Brownian motion is risk-neutral,
see (42). This is of course correct, since the expectation in (46) that we want to compute is in
the risk-neutral probability measure. The following Matlab code compute the Black-Scholes
price of a call option using the Monte Carlo method. The code also computes the statistical
error

Err = 1.96
s√
n

(47)

of the Monte Carlo price, where s is the standard deviation of the pay-off trials.

function [price, conf95]=MonteCarloCall(s,sigma,r,K,T,N,n)

tic

stockPath=StockPath(s,sigma,r,T,N,n);

payOff=max(0,stockPath(N,:)-K);

price=exp(-r*T)*mean(payOff);

conf95=1.96*std(payOff)/sqrt(n);

toc

For instance, by running the command

[price, conf95] = MonteCarloCall(10, 0.5, 0.01, 10, 1, 100, 100000)

we obtain the output

price = 1.9976

conf95 = 0.0249

The calculation took about half a second. The exact price for the given call obtained by using
the formula (43) is 2.0144, which lies within the confidence interval [1.9976−0.0249, 1.9976+
0.0249] = [1.9727, 2.0225] of the Monte Carlo price. Remark: The formula (43) is imple-
mented in Matlab by the function blsprice.

Control variate Monte Carlo

The Monte Carlo method just described is also known as crude Monte Carlo and can be
improved in a number of ways. For instance, it follows by (47) that in order to reduce

35



the error of the Monte Carlo price, one needs to either (i) increase the number of trials n
or (ii) reduce the standard derivation s. As increasing n can be very costly in terms of
computational time, the approach (ii) is preferable. There exist several methods to decrease
the standard deviation of a Monte Carlo computation, which are collectively called variance
reduction techniques. Here we describe the control variate method.

Suppose we want to compute E[X]. The idea of the control variate method is to introduce
a second random variable Q for which E[Q] can be computed exactly and then write

E[X] = E[Y ] + E[Q], where Y = X −Q.

Hence the Monte Carlo approximation of E[X] can now be written as

E[X] ≈ Y1 + · · ·+ Yn
n

+ E[Q],

where Y1, . . . , Yn are independent trials of the random variable Y . This approximation
improves the crude Monte Carlo estimate (without control variate) if the sample average
estimator of E[Y ] is better than the sample average estimator of E[X]. Because of (47), this
will be the case if (sY )2 < (sX)2. It will now be shown that the latter inequality holds if
X,Q have a positive large correlation. Letting X1, . . . , Xn be independent trials of X and
Q1, . . . , Qn be independent trials of Q, we compute

(sY )2 =
1

n− 1

n∑
i=1

(Y − Yi)2 =
1

n− 1

n∑
i=1

((X −Q)− (Xi −Qi))
2

= (sX)2 + (sQ)2 − 2C(X,Q),

where C(X,Q) is the sample covariance of the trials (X1, . . . , Xn), (Q1, . . . , Qn), namely

C(X,Q) =
n∑
i=1

(X −Xi)(Q−Qi).

Hence (sY )2 < (sX)2 holds provided C(X,Q) is sufficiently large and positive (precisely,
C(X,Q) > sQ/

√
2). As C(X,Q) is an unbiased estimator of Cov(X,Q), then the use of the

control variate Q will improve the performance of the crude Monte Carlo method if X,Q
have a positive large correlation. An application of this method to the Asian option is one
of the goals of the project in Chapter 3.
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Chapter 1

A project on the binomial model with
stochastic interest rate

In Section 0.2 we have discussed the binomial options pricing model under the assumption
that the risk-free asset has constant interest rate. In this section we consider a binomial
market in which the interest rate of the risk-free asset is a stochastic process. For the sake of
concreteness we model the interest rate by the Ho-Lee model. This working example should
be enough to grasp the general theory.

1.1 The generalized binomial model

Let {Mt}t=0,...,N be a N -period generalized random walk with transition probabilities

P(mt−1 → mt) =


pt(mt−1) if mt = mt−1 + 1
1− pt(mt−1) if mt = mt−1 − 1
0 otherwise

. (1.1)

We consider a binomial market consisting of a stock with price

S(t) = S0 exp

[
t

(
u+ d

2

)
+

(
u− d

2

)
Mt

]
, t = 0, 1, 2, . . . N, (1.2a)

together with a risk-free asset with value

B(t) = B(t− 1)(1 +R(t− 1)), t = 1, 2, . . . N,

where {R(t)}t=0,...,N−1, R(t) > −1, is the discretely compounded interest rate process. By
iterating the previous equation it follows that

B(t) = B0

t−1∏
k=0

(1 +R(k)), (1.2b)
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where B0 > 0 is the initial value of the risk-free asset. As 1 + R(t) > 0, then B(t) > 0 for
all t = 0, . . . , N .

Remark 1.1. We may also introduce the continuously compounded risk-free rate process
{r(t)}t=0,...,N−1 through the formula r(t) = log(1 + R(t)), t = 0, . . . , N − 1. In terms of
r(t), we can write (1.2b) as B(t) = B0 exp

∑t−1
k=0 r(k), which in the case r(t) = r =constant

reduces to the formula B(t) = B0e
rt used in Section 0.2. For the study of the stochastic

risk-free rate binomial model it is preferable to work with the process {R(t)}t=0,...,N−1.

In the following we assume that the risk-free process {R(t)}t=0,...,N−1 is measurable with
respect to the generalized random walk {Mt}t=0,...,N . In particular the stochastic process
{Mt}t=0,...,N completely defines the state of the market.

The discounted value (at time t = 0) of the stock in the market (1.2) is defined as S∗(t) =
B0

B(t)
S(t), that is

S∗(t) = D(t)S(t) =
S(t)

(1 +R(0))(1 +R(1)) . . . (1 +R(t− 1))
, (1.3)

where

D(0) = 1, D(t) =
t−1∏
k=0

(1 +R(k))−1, t = 1, . . . , N (1.4)

is the discount process. The market (1.2) is arbitrage free if there exist transition prob-
abilities (1.1) which make the discounted stock price process {S∗(t)}t=0,...,N a martingale; if
this martingale probability is unique, the market is complete. We discuss below one example.

The Ho-Lee model

The literature abounds of stochastic models for the risk-free rate, see [1]. In this chapter we
shall study the (discrete) Ho-Lee model:

R(t) = a(t) + b(t)Mt, where a(t) ∈ R and b(t) > 0, t = 0, 1, 2, . . . , N − 1. (1.5)

Since the minimum value of Mt is −t, then the condition R(t) > −1 is satisfied along all
paths if and only if

a(t) > b(t)t− 1, (1.6)

which will be assumed from now on. Our purpose is to prove that the market (1.2), with the
risk-free rate given by the Ho-Lee model, is complete under simple conditions on the market
parameters.

Theorem 1.1. The market (1.2) admits a martingale probability measure if and only if the
functions a(t), b(t) are such that

ed < 1 + a(t)− b(t)t, and 1 + a(t) + b(t)t < eu, (1.7)
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for all t = 0, 1, . . . , N − 1. Moreover, when it exists, the martingale probability measure is
unique and it is given by pt(k) = qt(k), where

qt(k) =
1 + a(t− 1) + b(t− 1)k − ed

eu − ed
, (1.8)

where t = 1, . . . , N, k ∈ Im(Mt−1) = {−t + 1,−t + 3, . . . , t − 3, t − 1}. Thus, under the
conditions (1.7), the market (1.2) is complete.

Proof. As {S∗(t)}t=0,...,N is measurable with respect to {Mt}t=0,...,N , it suffices to prove that

E[S∗(t)|M0, . . . ,Mt−1] = S∗(t− 1), t = 1, 2, . . . , N. (1.9)

As R(t) is measurable with respect to Mt, the discount process can be taken out from the
conditional expectation in the left hand side of (1.9), hence

E[S∗(t)|M0, . . . ,Mt−1] =
E[S(t)|M0, . . . ,Mt−1]

(1 +R(0)) . . . (1 +R(t− 1))
=

E[S(t)|Mt−1]

(1 +R(0)) . . . (1 +R(t− 1))
,

where for the second equality we use that {S(t)}t=0,...,N is measurable with respect to
{Mt}t=0,...,N and that {Mt}t=0,...,N is a Markov process (see Remark 0.1). Writing S(t) =
S(t)
S(t−1)

S(t− 1) and using that S(t− 1) is Mt−1-measurable we obtain

E[S∗(t)|M0, . . . ,Mt−1] =
S(t− 1)

(1 +R(0)) . . . (1 +R(t− 1))
E[

S(t)

S(t− 1)
|Mt−1].

Next we use

S(t− 1)

(1 +R(0)) . . . (1 +R(t− 1))
=

S∗(t− 1)

1 +R(t− 1)
,

S(t)

S(t− 1)
= e

u+d
2 e

u−d
2

(Mt−Mt−1).

According to (1.1), the increments of the process {Mt}t=0,...,N satisfy

P(Mt −Mt−1 = 1|Mt−1 = k) = pt(k), P(Mt −Mt−1 = −1|Mt−1 = k) = 1− pt(k).

Hence

E[S∗(t)|M0, . . . ,Mt−1] =
S∗(t− 1)

1 +R(t− 1)
E[e

u+d
2 e

u−d
2

(Mt−Mt−1)|Mt−1]

= S∗(t− 1)
e
u+d
2

1 + a(t− 1) + b(t− 1)k

(
e
u−d
2 pt(k) + e−

u−d
2 (1− pt(k))

)
.

Thus in order for pt(k) to be a martingale probability it must hold that

e
u+d
2

1 + a(t− 1) + b(t− 1)k

(
e
u−d
2 pt(k) + e−

u−d
2 (1− pt(k))

)
= 1.

Solving the latter equation we find pt(k) = qt(k), where qt(k) is given by (1.8). Moreover
0 < qt(k) < 1 holds if and only if (1.7) are satisfied, which concludes the proof of the
theorem.
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Remark 1.2. It is clear that the transition probabilities are constant if and only if b ≡ 0
and a(t) = a(0), for all t = 1, . . . , N−1, i.e., if and only if the risk-free rate is a deterministic
constant, in which case we go back to the standard binomial model.

Example. Let a0, b0 be constants such that b0 > 0 and a0 > b0 − 1. When

a(t) = a(0) := a0, b(t) =
b0

t
, t = 1, . . . , N − 1, (1.10)

the conditions (1.7) become

ed < 1 + a0 − b0, eu > 1 + a0 + b0

and the martingale transition probabilities read

q1(0) =
1 + a0 − ed

eu − ed
, qt(k) =

1 + a0 + b0k
t−1
− ed

eu − ed
,

for t = 2, . . . , N , k ∈ {−t+ 1,−t+ 3, . . . , t− 1}. We shall use this example later on.

European derivatives on the stock

Next we study the problem of pricing European derivatives in the market (1.2).

Definition 1.1. Assume that the market (1.2) is complete (e.g., the risk-free rate is given
by the Ho-Lee model and the conditions (1.7) are verified). Consider a European derivative
with maturity T = N and pay-off Y which is measurable with respect to M0, . . . ,MN (e.g.,
Y = g(S(N)) for a standard European derivative on the stock). The risk-neutral price of the
derivative is given by

ΠY (t) = D(t)−1Ẽ[D(T )Y |M0, . . . ,Mt], t = 0, . . . , T, (1.11)

where Ẽ denotes the (conditional) expectation in the martingale probability measure. In

particular, ΠY (0) = Ẽ[D(T )Y ] and ΠY (T ) = Y .

For example, the zero coupon bond (ZCB) with face value K and maturity T is the
European style derivative that promises to pay K at time T . It follows by Definition 1.11
that the value of the ZCB at time t is given by

BK(t, T ) = KD(t)−1Ẽ[D(T )|M0, . . . ,Mt] t = 0, . . . , T = N.

When K = 1 we denote BK(t, T ) simply as B(t, T ), that is

B(t, T ) = D(t)−1Ẽ[D(T )|M0, . . . ,Mt], t = 0, . . . , T. (1.12)

Clearly, BK(t, T ) = KB(t, T ). Moreover the following variant of the put-call parity holds in
the market (1.2):

Πcall(t)− Πput(t) = S(t)−KB(t, T ). (1.13)
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Task 1.1 (*). Prove (1.13).

Example in the 3-period model with Ho-Lee risk-free rate. Consider a binomial
stock price with N = 3, u = −d = 0.07, S0 = 10 and a Ho-Lee model for the interest rate
with parameters

a(0) = R0 = 0.03, a(1) = 0.05, a(2) = 0.04, b(1) = 0.02, b(2) = 0.01.

The martingale transition probabilities are

q1(0) =
1 +R0 − ed

eu − ed
= 0.6966

q2(1) =
1 + a(1) + b(1)− ed

eu − ed
= 0.9821

q2(−1) =
1 + a(1)− b(1)− ed

eu − ed
= 0.6966

q3(2) =
1 + a(2) + 2b(2)− ed

eu − ed
= 0.9107

q3(0) =
1 + a(2)− ed

eu − ed
= 0.7680

q3(−2) =
1 + a(2)− 2b(2)− ed

eu − ed
= 0.6252

As qt(k) ∈ (0, 1), the market is complete. The binomial tree for the stock price in the
martingale probability is as follows

S(3) = 12.3368

S(2) = 11.5027

q3(2)
55

1−q3(2)

))
S(1) = 10.7251

q2(1)
55

1−q2(1)

))

S(3) = 10.7251

S(0) = 10

q1(0)
66

1−q1(0)

((

S(2) = 10

q3(0)
55

1−q3(0)

))
S(1) = 9.3239

q2(−1)
55

1−q2(−1)

))

S(3) = 9.3239

S(2) = 8.6936

q3(−2)
55

1−q3(−2)

))
S(3) = 8.1059
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The binomial tree for the interest rate is

R(2) = 0.06

R(1) = 0.07

q2(1)
66

1−q2(1)

((
R(0) = 0.03

q1(0)
66

1−q1(0)

((

R(2) = 0.04

R(1) = 0.03

q2(−1)
66

1−q2(−1)

((
R(2) = 0.02

The discount process in the martingale probability has the following distribution

D(0) = 1, D(1) =
1

1 +R(0)
= 0.9709, with prob. 1,

D(2) =
D(1)

1 +R(1)
=

{
D(1)

1+0.07
= 0.9074, with prob. q1(0)

D(1)
1+0.03

= 0.9426 with prob. 1− q1(0)
,

D(3) =
D(2)

1 +R(2)
=


0.9074
1+0.06

= 0.8560, with prob. q1(0)q2(1)
0.9074
1+0.04

= 0.8725 with prob. q1(1)(1− q2(1))
0.9426
1+0.04

= 0.9063 with prob. (1− q1(0))q2(−1)
0.9426
1+0.02

= 0.9241 with prob. (1− q1(0))(1− q2(−1))

Now assume that we want to compute the initial price of a call option on the stock with
strike K = 10 and maturity T = 3. According to Definition 1.1, this price is given by

Π(0) = Ẽ[D(3)(S(3)− 10)+],

where the expectation is in the martingale probability qt(k). To compute this expectation
we need the joint distribution of the random variables D(3), S(3). Using our results above
we find that this joint distribution is given as in the following table:

D(3) ↓, S(3)→ 12.3368 10.7251 9.3239 8.1059
0.8560 q1(0)q2(1)q3(2) q1(0)q2(1)(1−q3(2)) 0 0
0.8725 0 q1(0)(1−q2(1))q3(0) q1(0)(1−q2(1))(1−q3(0)) 0
0.9063 0 (1−q1(0))q2(−1)q3(0) (1−q1(0))q2(−1)(1−q3(0)) 0
0.9241 0 0 (1−q1(0))(1−q2(−1))q3(−2) (1−q1(0))(1−q2(−1))(1−q3(−2))

We conclude that

Π(0) = 0.8560[(12.3368− 10)q1(0)q2(1)q3(2) + (10.7251− 10)q1(0)q2(1)(1− q3(2))]

+ 0.8725(10.7251− 10)q1(0)(1− q2(1))q3(0) + 0.9063(1− q1(0))q2(−1)q3(0) = 1.4373.
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Task 1.2 (*). In the example just considered compute the possible prices of the call at times
t = 1, 2.

For future purpose we also compute the initial price of the ZCB expiring at time T = 3.
According to (1.12), the value at time t = 0 of the ZCB with face value 1 is given by

B(0, T ) = Ẽ[D(T )]. Hence

B(0, 3) = Ẽ[D(3)] =0.8560q1(0)q2(1) + 0.8725q1(0)(1− q2(1))

+ 0.9063(1− q1(0))q2(−1) + 0.9241(1− q1(0))(1− q2(−1)) = 0.8731.
(1.14)

1.2 Forward and Futures

Forward contracts

A forward contract with delivery price K and maturity (or delivery) time T on an asset
U is a European type financial derivative stipulated by two parties in which one promises to
the other to sell (and possibly deliver) the asset U at time T in exchange for the cash K.
As opposed to option contracts, both parties in a forward contract are obliged to fulfill their
part of the agreement. In particular, as they both have the same right/obligation, neither
of the two parties has to pay a premium to the other when the contract is stipulated, that is
to say, forward contracts are free; in fact, the terminology used for forward contracts is “to
enter a forward contract” and not “to buy/sell a forward contract”. The party who must
sell the asset at maturity holds the short position, while the party who must buy the asset
is the holder of the long position. Hence the pay-off for a long position in a forward contract
on the asset U is

Ylong = (ΠU(T )−K),

while for the holder of the short position the pay-off is

Yshort = (K − ΠU(T )).

Forward contracts are traded OTC and most commonly on commodities or market indexes,
such as currency exchange rates, interest rates and volatilities. In the case that the underlying
asset is an index, forward contracts are also called swaps (e.g., currency swaps, interest rate
swaps, volatility swaps, etc.).

One purpose of forward contracts is to share risks. Irrespective of the movement of the
underlying asset in the market, its price at time T for the holders of the forward contract
will be K. The delivery price agreed by the two parties in a forward contract is also called
the forward price of the asset. More precisely, the T -forward price ForU(t, T ) of an asset
U at time t < T is the strike price of a forward contract on U stipulated at time t and with
maturity T , while the current, actual price ΠU(t) of the asset is called the spot price. Note
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that the forward price ForU(t, T ) is unlikely to be a good estimation for the price of the asset
at time T , since the consensus on this value is limited to the participants of the forward
contract and different parties may agree to different delivery prices. The delivery price of
futures contracts on the asset, which we define in the next section, gives a better and more
commonly accepted estimation for the future value of an asset.

Theorem 1.2. Suppose that the market {ΠU(t), B(t)}t=0,...,N is given by (1.2) (with S(t) =
ΠU(t)) and that the market is complete. The forward price of the asset U for delivery at time
T = N is given by

ForU(t, T ) =
ΠU(t)

B(t, T )
, (1.15)

where B(t, T ) is given by (1.12), that is to say, B(t, T ) is the risk-neutral price at time t of
the ZCB with face value 1 and expiring at time T .

Proof. The proof is very simple. First we remark that having a long position on a forward
contract with maturity T and delivery price K is equivalent to hold a portfolio which is long
1 share of the call on the asset and short 1 share of the put on the asset, both options with
maturity T and strike price K. Indeed, irrespective of the price of the asset at time T , this
portfolio entails that we will buy the asset at time T for the price K. Hence if we denote
by F (t), C(t), P (t) the arbitrage-free value at time t < T of the forward contract, the call
option and the put option respectively, then it must hold

C(t)− P (t) = F (t).

On the other hand, by the put-call parity (1.13),

C(t)− P (t) = Π(t)−KB(t, T ).

As forward contracts have zero value, then F (t) = 0 must hold, which is the case if and
only if K = Π(t)/B(t, T ). By definition of forward price, this completes the proof of the
theorem.

For instance, in the 3-period market model considered in Section 1.1, we have found B(0, 3) =
0.8731, see (1.14). Hence the 3-forward price at time t = 0 of the stock in that market is
For(0, T ) = S(0)/B(0, 3) = 10/0.8731 = 11.4534.

Futures

Futures are standardized forward contracts, i.e., rather than being OTC, they are negotiated
in regularized markets. Specifically, a futures market is a market in which the object of
trading are futures contracts. Unlike forward contracts, all futures contracts in a futures
market are subject to the same regulation, and so in particular all contracts on the same
asset with the same time of maturity T have the same delivery price. The T-future price
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Figure 1.1: Futures price of corn on May 12, 2014 (dashed line) and on May 13, 2014
(continuous line) for different delivery times

FutU(t, T ) of the asset U at time t ≤ T is defined as the delivery price at time t ≤ T in
the futures contract on the asset U with maturity T . Futures markets have been existing
for more than 300 years and nowadays the most important ones are the Chicago Mercantile
Exchange (CME), the New York Mercantile Exchange (NYMEX), the Chicago Board of
Trade (CBOT) and the International Exchange Group (ICE).

In a futures market, anyone (after a proper authorization) can stipulate a futures contract.
More precisely, holding a position in a futures contract in the futures market consists in the
agreement to receive as a cash flow the change in the future price of the underlying asset
during the time in which the position is held. The cash flow may be positive or negative.
In a long position the cash flow is positive when the future price goes up and it is negative
when the future price goes down. Moreover, in order to alleviate the risk of insolvency,
the cash flow is distributed in time through the mechanism of the margin account. For
example, assume that at t = 0 we open a long position in a futures contract expiring at time
T . At the same time, we need to open a margin account which contains a certain amount of
cash (usually, 10 % of the current value of the T -future price for each contract opened). At
t = 1 day, the amount FutU(1, T ) − FutU(0, T ) will be added to the account, if it positive,
or withdrawn, if it is negative. The position can be closed at any time t < T (multiple of
days), in which case the total amount of cash flown in the margin account is

(FutU(t, T )− FutU(t− 1, T )) + (FutU(t− 1, T )− FutU(t− 2, T ))+

· · ·+ (FutU(1, T )− FutU(0, T )) = (FutU(t, T )− FutU(0, T )).

If a long position is held up to the time of maturity, then the holder of the long position
should buy the underlying asset. However futures contracts are often cash settled and not
physically settled, which means that the delivery of the underlying asset does not occur,
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Figure 1.2: Futures price of natural gas on May 13, 2014 for different delivery times

and the equivalent value in cash is paid instead.

Our next purpose is to introduce the definition of arbitrage-free future price of an asset. Our
strategy is to show is that any reasonable definition should satisfy 3 standard conditions and
then show that these conditions define uniquely the future price as a stochastic process.

For simplicity we argue under the assumption that the underlying asset U and the money
market make up a complete market of the form (1.2) with S(t) = ΠU(t) and T = N . As
the generalized random walk {Mt}t=0,...,N contains all the information about the state of the
market, we are naturally led to impose the following first condition on the future price.

Assumption 1. The future price process {FutU(t, T )}t=0,...,T=N is measurable with respect
to {Mt}t=0,...,N .

For the next assumption we need to define the concept of self-financing portfolio process
invested in the futures contract and the money market. Consider a portfolio process that, at
time t < T , consists of h(t) shares of the futures contract expiring at time T and ht+1(t) shares
of the ZCB maturing at time t + 1. As the ZCB has very short time left to maturity, then
ht(t+1) is our position on the money market (recall that the money market consists of short
term loan assets). We assume that the portfolio process is predictable from {Mt}t=0,...,N . As
futures contracts have zero value, the value of the portfolio at time t is simply the money
market account:

V (t) = ht+1(t)B(t, t+ 1) =
ht+1(t)

1 +R(t)
.

At time t+ 1 the portfolio generates the cash flow

C(t+ 1) = ht+1(t) + h(t)(FutU(t+ 1, T )− FutU(t, T ))

= V (t)(1 +R(t)) + h(t)(FutU(t+ 1, T )− FutU(t, T )).
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In a self-financing portfolio this cash should be immediately re-invested in the money mar-
ket1. Hence C(t+ 1) = ht+2(t+ 1)B(t+ 1, t+ 2) = V (t+ 1). It follows that

h(t)(FutU(t+ 1, T )− FutU(t, T )) = V (t+ 1)− (1 +R(t))V (t) = V (t+ 1)− D(t)

D(t+ 1)
V (t)

= D(t+ 1)−1[D(t+ 1)V (t+ 1)−D(t)V (t)].

Hence

h(t)D(t+ 1)(FutU(t+ 1, T )− FutU(t, T )) = V ∗(t+ 1)− V ∗(t). (1.16)

Definition 1.2. A predictable portfolio process invested in the futures contract and the money
market is said to be self-financing if its discounted value satisfies (1.16).

Now, by the arbitrage-free principle, any self-financing portfolio invested in futures and in the
money market should not be an arbitrage. We have seen that this condition can be achieved
by imposing that the discounted value of predictable self-financing portfolio processes is a
martingale. This holds in particular if

Ẽ[V ∗(t+ 1)|M0, . . . ,Mt] = V ∗(t),

for all t = 0, . . . , T − 1. Hence, taking the conditional expectation of both sides of (1.16)
with respect to M0, . . . ,Mt, we obtain

h(t)D(t+1)Ẽ[FutU(t+1, T )−FutU(t, T )|M0, . . . ,Mt] = Ẽ[V ∗(t+1)−V ∗(t)|M0, . . . ,Mt] = 0,

where we used that h(t) and D(t + 1) are measurable with respect to M0, . . . ,Mt and thus
can be taken out from the conditional expectation. By Assumption 1 we have

Ẽ[FutU(t+ 1, T )− FutU(t, T )|M0, . . . ,Mt] = Ẽ[FutU(t+ 1, T )|M0, . . . ,Mt]− FutU(t, T ).

Hence the market is free of self-financing arbitrages if we assume the following.

Assumption 2. The future price satisfies

Ẽ[FutU(t+ 1, T )|M0, . . . ,Mt] = FutU(t, T ), t = 0, . . . , T − 1.

The last natural assumption is that the future price at maturity t = T should coincide with
the spot price Π(T ) of the asset, i.e.,

Assumption 3. FutU(T, T ) = Π(T ).

Theorem 1.3. There is only one stochastic process {FutU(t, T )}t=0,...,T that satisfies As-
sumptions 1-3, namely

FutU(t, T ) = Ẽ[Π(T )|M0, . . . ,Mt]. (1.17)

1This is the only possibility, as changing position on the futures contract costs nothing.
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Proof. The proof that (1.17) satisfies 1-3 follows easily by the properties of the conditional
expectation. Now, Assumptions 2-3 imply directly that (1.17) holds at time t = T − 1, for

FutU(T − 1, T ) = Ẽ[FutU(T, T )|M0, . . . ,MT−1] = Ẽ[Π(T)|M0, . . . ,MT−1],

where we used Assumption 2 with t = T − 1 in the first equality, and assumption 3 in the
second equality. Now the proof of the theorem can be easily completed by induction.

As an example, consider again the 3-period model in Section 1.1. The 3-future price at time
t = 0 of the stock in that market is

Fut(0, 3) = Ẽ[S(3)] = q1(0)q2(1)q3(2)12.3368

+ [q1(0)q2(1)(1− q3(2)) + q1(0)(1− q2(1))q3(0) + (1− q1(0))q2(−1)q3(0)]10.7251

+ [q1(0)(1− q2(1))(1− q3(0)) + (1− q1(0))q2(−1)(1− q3(0))

+ (1− q1(0))(1− q2(−1))q3(−2)]9.3239

+ (1− q1(0))(1− q2(−1))(1− q3(−2))6.1059 = 11.6039

Recall that the 3-forward price at time t = 0 of the same stock is 11.4534, which was
computed at the end of Section 1.2. The general relation between forward and future price
of an asset is given in the following theorem.

Theorem 1.4. The Forward-Future spread of an asset, i.e., the difference between its
forward and future price, satisfies

ForU(0, T )− FutU(0, T ) =
C̃ov[D(T ),Π(T )]

Ẽ[D(T )]
,

where C̃ov is the covariance in the risk-neutral probability. Moreover if the interest rate of
the money market is deterministic then FutU(0, T ) = For(0, T ).

Task 1.3 (*). Prove the theorem.

Task 1.4 (Matlab). Write a Matlab code that compute the future price at time t = 0 of an
asset in the market (1.2), where the risk-free rate follows the Ho-Lee model with functions
a(t), b(t) given by (1.10). Study how the future price curve T → FutU(0, T ) depend on
the parameters a0, b0. Hint: Letting x = {−1, 1}N be a possible path for the price of the
underlying asset, we have

FutU(0, T ) = Ẽ[ΠU(T )] =
∑

x∈{−1,1}N
P̃(x)ΠU(T, x) (1.18)

where

ΠU(T, x) = ΠU(0) exp

(
T
u+ d

2
+
u− d

2
(x1 + · · ·+ xT )

)
is the asset price at time T along the path x and P̃(x) is the risk-neutral probability of
realization of the path x, which is computed according to (5). To apply (1.18) you need to
create all 2N elements x ∈ {−1, 1}N , which is possible only for a relatively small number of
steps (up to, say, N ≈ 20).
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Chapter 2

A project on the trinomial model

As opposed to the binomial options pricing model, the trinomial model is an incomplete
model, that is to say, the risk-neutral price of European derivatives in a trinomial market
is not uniquely defined. Some scholars believe that real markets are incomplete, due to the
fact that investors assign different values to the market price of risk (i.e., choose a different
risk-neutral probability to price European derivatives). In this project the trinomial model
is studied in details, in particular regarding the problem of pricing and hedging European
derivatives by “almost” self-financing and hedging portfolios.

2.1 The trinomial model

In the trinomial model the stock price is allowed to move in three different directions at each
time step, namely S(0) = S0 > 0 and

S(t) =


S(t− 1)eu with prob. pu
S(t− 1)em with prob. pm
S(t− 1)ed with prob. pd

t = 1, . . . , N,

where u > m > d, 0 < pu, pm, pd < 1 and pu + pm + pd = 1. The risk-free asset has value
B(t) = B0e

rt, where r is constant.

The possible prices of the stock at time t = 0, . . . , N satisfy

S(t) ∈ {S0e
Nu(t)u+Nd(t)d+(t−Nu(t)−Nd(t))m for Nu(t), Nd(t) = 0, . . . , t and Nu(t) +Nd(t) ≤ t}.

It follows that the number of possible stock prices at time t is

t∑
Nu=0

t−Nu∑
Nd=0

1 =
t∑

Nu=0

(t−Nu + 1) = (t+ 1)t+ t+ 1−
t∑

Nu=0

Nu

= (t+ 1)t+ t+ 1− (t+ 1)t

2
=

(t+ 1)(t+ 2)

2
.
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Thus the number of nodes in the trinomial tree grows quadratically—while we recall that
for the binomial model this grow was linear (t + 1 possible prices at time t). To reduce the
number of nodes in the trinomial tree we shall assume from now on that the recombination
condition holds:

m =
u+ d

2
and thus restrict the trinomial stock price to the form

S(t) =


S(t− 1)eu with prob. pu
S(t− 1)e

u+d
2 with prob. pm

S(t− 1)ed with prob. pu

t = 1, . . . , N, (2.1)

with u > d. In this case the possible stock prices at time t belong to the set

{S0e
(u−d)(Nu(t)−Nd(t))/2+(u+d)t/2), Nu(t), Nd(t) = 0, . . . , t},

which contains 2t + 1 elements. Hence the number of nodes of the trinomial tree with
the recombination condition grows linearly, as for the binomial model. In the following we
restrict to this case for simplicity.

Probabilistic formulation. Let Ω = {−1, 0, 1}N . Given p = (pu, pm, pd) such that 0 <
pu, pm, pd < 1 and pu + pm + pd = 1, we define the probability Pp on the sample space Ω by
letting

Pp(ω) = pN+(ω)
u pN0(ω)

m p
N−(ω)
d ,

where N±(ω) is the number of ±1 in the sample ω and N0(ω) = N − N+(ω) − N−(ω) the
number of 0’s. The trinomial stock price can be regarded as a stochastic process in the
probability space (Ω,Pp). To see this let the stochastic process {Xt}t=1,...,N be defined on
ω = (γ1, . . . , γN) ∈ Ω as X(ω) = γt, that is

Xt(ω) =


−1 if γt = −1
0 if γt = 0
1 if γt = 1

. (2.2)

Note that the random variables X1, . . . , XN are independent and identically distributed
(i.i.d.). We can write (2.1) as

S(t) = S(t− 1) exp

[(
u+ d

2

)
+

(
u− d

2

)
Xt

]
. (2.3)

Iterating the previous identity, the trinomial stock price at time t = 1, . . . , N is

S(t) = S0 exp

[
t

(
u+ d

2

)
+

(
u− d

2

)
Zt

]
, Zt = X1 + · · ·+Xt. (2.4)

Hence S(t) : Ω → R and {S(t)}t=0,...,N is a stochastic process on the probability space
(Ω,Pp). Letting Z0 = 0, the process {S(t)}t=0,...,N is measurable with respect to {Zt}t=0,...,N .
Moreover we have the following analogue of Theorem 0.4.
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Theorem 2.1. The probability measure Pp is a martingale measure if and only if p = q =
(qu, qm, qd), where (qu, qm, qd) satisfy

que
u + qme

u+d
2 + qde

d = er, (2.5a)

qu + qm + qd = 1, (2.5b)

0 < qu, qm, qd < 1. (2.5c)

Task 2.1 (*). Prove the theorem.

We remark that there exists infinitely many triples that satisfy (2.5). Indeed the solution
of (2.5a)-(2.5b) can be written in parametric form as

qu =
er − ed

eu − ed
− ω ed/2

eu/2 + ed/2
, qm = ω, qd =

eu − er

eu − ed
− ω eu/2

eu/2 + ed/2
(2.6)

and, under suitable conditions on the market parameters r, u, d and the free parameter ω,
all such solutions define a probability, i.e., they satisfy (2.5c). Note also that in the limit
ω → 0 the trinomial model reduces to the binomial model and the solutions (2.6) converge
to the martingale probability measure of the binomial model.

Task 2.2 (*). Let r > 0, u > 0 and u = −d. Show that the triples (2.6) satisfy (2.5c) if and
only if

u > r and 0 < ω <
eu − er

eu − 1
.

The existence of a martingale probability measure ensures that the trinomial market is free
of self-financing arbitrages, see Remark 0.3. However the non-uniqueness of such measure
prevents to fix uniquely the price of European derivatives. Some practitioners have a positive
view of this property of the trinomial model, since the freedom in choosing the parameter ω
can be used to better calibrate the model. However, regardless of which martingale measure
one chooses, it is generally not possible to hedge European derivatives self-financially, that
is to say, the trinomial model is incomplete (see Remark 0.5). To see this, consider a one-
period model with u = −d and a derivative with pay off Y = g(S(1)). A (constant) portfolio
(hS, hB) hedging the derivative should satisfy hSS(1) + hBB0e

rt = g(S(1)) for all possible
values of S(1). This leads to the three equations

hSS0e
u + hBB0e

rt = g(S0e
u),

hSS0 + hBB0e
rt = g(S0),

hSS0e
−u + hBB0e

rt = g(S0e
−u).

This system has a solution (hS, hB) if and only if

g(S0e
−u)− g(S0)e−u − g(S0) + g(S0e

u)e−u = 0,
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which is satisfied only for very particular choices of the pay-off function and of the market
parameters. For instance for a call option with strike K = S0, the latter equation becomes

(e−u − 1)+ + (eu − 1)+e
−u = 0,

which has the only solution u = 0.

Incomplete models, of which the trinomial model is just an example, are investigated exten-
sively by scholars and the community is divided among those who believe that incomplete
models should be rejected and others who instead believe that real markets are incomplete
and therefore incomplete models are more realistic.

2.2 Pricing and hedging in incomplete markets

The most common approach to incompleteness is to accept it as an attribute of real markets.
That is to say, in real markets there is no only one acceptable fair price for financial derivatives
and moreover financial derivatives cannot be perfectly hedged by self-financing portfolios.
Let’s discuss how the trinomial model can address these two properties.

Pricing

In the incomplete trinomial model there exist infinitely many martingale measures (qu, qm, qd),
see (2.6). Each martingale measure gives rise to a different price for the European deriva-
tive with pay-off Y at maturity T = N ; denoting by Eω the expectation in the probability
measure (2.6) and by ΠY (t, ω) the price of the derivative derived from this measure, we have

ΠY (t, ω) = e−r(N−t)Eω[Y |S(1), . . . , S(t)].

Task 2.3 (*). Prove the recurrence formula ΠY (N,ω) = Y ,

ΠY (t, ω) = e−r[quΠ
u
Y (t+ 1, ω) + qmΠm

Y (t+ 1, ω) + qdΠ
d
Y (t+ 1, ω)], t = 0, . . . , N − 1. (2.7)

In Task 2.4 below it is asked to compute ΠY (0, ω) with Matlab using the recurrence for-
mula (2.7). To simplify the analysis we assume that the parameters of the trinomial model
are

u = −d, 0 < r < u, pu = pd = p ∈ (0, 1/2). (2.8)

Thus (2.3) becomes

S(t) = S(t− 1)euXt , Xt =


−1 with prob. p
0 with prob. 1− 2p
1 with prob. p

. (2.9)

52



Moreover, according to Task 2.2, for each value

0 < ω <
eu − er

eu − 1
:= ωmax(r, u),

we have the martingale probability defined by

qu =
er − e−u

eu − e−u
− ω e−u/2

eu/2 + e−u/2
, qm = ω, qd =

eu − er

eu − e−u
− ω eu/2

eu/2 + e−u/2
. (2.10)

Now let 0 = t0 < t1 < · · · < tN = T be a uniform partition of the interval [0, T ] with size
ti − ti−1 = h. Define S(0) = S0 and

S(ti) = S(ti−1)euXi , i = 1, . . . , N, (2.11)

where the random variables X1, . . . , XN are given by (2.9). The instantaneous variance of
the stock is defined, as for the binomial model, by

σ2 =
1

h
Varp[logS(ti)− logS(ti−1)] =

2

h
pu2. (2.12)

Having chosen u = −d, the instantaneous mean of log return is zero. The interest rate on

each period becomes rh and, according to (2.12), u =
√

h
2p
σ. It is easy to see that

ωmax

(
rh,

√
h

2p
σ
)
→ 1, as h→ 0+.

Hence provided h is sufficiently small we can assume that 0 ≤ ω . 1. Moreover the recurrence
formula (2.7) becomes ΠY (tN , ω) = Y , and

ΠY (ti, ω) = e−rh[quΠ
u
Y (ti+1, ω) + qmΠm

Y (ti+1, ω) + qdΠ
d
Y (ti+1, ω)], i = 0, . . . , N − 1. (2.13)

Task 2.4 (Matlab). Write a Matlab function

EuroZeroTrin(g, T, s, sigma, r, p, omega, N)

that computes the trinomial price at time t = 0 of the standard European derivative with pay-
off Y = g(S(T )) when ω ∈ (0, 1) is fixed. Show numerically that the result depends on the
probability p. Plot the curves ω → ΠY (0, ω) for different values of p and show numerically
that the binomial and the trinomial price converge to the same value as N → ∞ only for
ω = 1 − 2p. For this value of ω, study the speed of convergence to the Black-Scholes price
as N →∞ for different values of p ∈ (0, 1/2) and look for the value p∗ that gives the fastest
convergence. Show that the trinomial model converges to the Black-Scholes price faster than
the binomial model.
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Hedging

European derivatives in the incomplete trinomial model cannot, in general, be hedged by
self-financing portfolios. It is not hard to believe that this is often the case in real markets,
which marks a point in favor of using incomplete models for real-world applications.

As hedging portfolios in incomplete markets cannot be, in general, self-financing, then we
have to allow for cash-flows into the portfolio. Of course some restrictions in the cash flow
are necessary, otherwise we could hedge the derivative by simply adding the cash required
to pay-off the buyer just before the derivative expires. Here we discuss an approach for
hedging in incomplete markets that can be seen as the “best approximation” to the usual
self-financing strategy. For simplicity we restrict ourselves to the 2-period model.

The equations defining a self-financing hedging portfolio for the derivative with pay-off Y =
g(S(2)) in a 2-period trinomial model are

hS(2)S(2) + hB(2)B(2) = g(S(2)) (Hedging condition)

hS(2)S(1) + hB(2)B(1) = hS(1)S(1) + hB(1)B(1), (Self-financing condition)

We assume the values (2.8) for the market parameters. This implies in particular that the
possible stock prices at time 1 are given by S0e

ju, for j = −1, 0, 1. We denote by hS(2, j)
the portfolio position on the stock in the interval (1, 2] assuming that the stock price at time
1 is S0e

ju, and with similar meaning we define hB(2, j). Hence the full portfolio process is
described by 8 variables, namely

hS(2, 1), hS(2, 0), hS(2,−1), hB(2, 1), hB(2, 0), hB(2,−1), hS(1), hB(1).

The hedging/self-financing conditions are equivalent to the following 12 equations:

hS(2, 1)S0e
2u + hB(2, 1)B0e

2r = g(S0e
2u)

hS(2, 1)S0e
u + hB(2, 1)B0e

2r = g(S0e
u)

hS(2, 1)S0 + hB(2, 1)B0e
2r = g(S0)

hS(2, 0)S0e
u + hB(2, 0)B0e

2r = g(S0e
u)

hS(2, 0)S0 + hB(2, 0)B0e
2r = g(S0)

hS(2, 0)S0e
−u + hB(2, 0)B0e

2r = g(S0e
−u)

hS(2,−1)S0 + hB(2,−1)B0e
2r = g(S0)

hS(2,−1)S0e
−u + hB(2,−1)B0e

2r = g(S0e
−u)

hS(2,−1)S0e
−2u + hB(2,−1)B0e

2r = g(S0e
−2u)


Hedging condition

hS(2, 1)S0e
u + hB(2, 1)B0e

r = hS(1)S0e
u + hB(1)B0e

r

hS(2, 0)S0 + hB(2, 0)B0e
r = hS(1)S0 + hB(1)B0e

r

hS(2,−1)S0e
−u + hB(2,−1)B0e

r = hS(1)S0e
−u + hB(1)B0e

r

 Self-financing condition

or, in a more concise form,

hS(2, j)S0e
(j+k)u + hB(2, j)e2r = g(S0e

(j+k)u), (2.14)

hS(2, j)S0e
ju + hB(2, j)er = hS(1)eju + hB(1)B0e

r where j = −1, 0, 1, k = −1, 0, 1.
(2.15)
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The system of 9 equations for the hedging condition can be written in matrix from as Ax = y
where

x =



hS(2, 1)
hS(2, 0)
hS(2,−1)
hB(2, 1)
hB(2, 0)
hB(2,−1)
hS(1)
hB(1)


∈ R8, y =



g(S0e
2u)

g(S0e
u)

g(S0)
g(S0e

u)
g(S0)

g(S0e
−u)

g(S0)
g(S0e

−u)
g(S0e

−2u)


∈ R9

and A is the 9× 8 matrix given by

A =



S0e
2u 0 0 B0e

2r 0 0 0 0
S0e

u 0 0 B0e
2r 0 0 0 0

S0 0 0 B0e
2r 0 0 0 0

0 S0e
u 0 0 B0e

2r 0 0 0
0 S0 0 0 B0e

2r 0 0 0
0 S0e

−u 0 0 B0e
2r 0 0 0

0 0 S0 0 0 B0e
2r 0 0

0 0 S0e
−u 0 0 B0e

2r 0 0
0 0 S0e

−2u 0 0 B0e
2r 0 0


.

The system of 3 equations for the self-financing condition can be written in matrix form as
Bx = 0, where B is the 3× 8 matrix given by

B =

S0e
u 0 0 B0e

r 0 0 −S0e
u −B0e

r

0 S0 0 0 B0e
r 0 −S0 −B0e

r

0 0 S0e
−u 0 0 B0e

r −S0e
−u −B0e

r

 .

Hence the full system on the hedging self-financing portfolio x is Gx = b, where G is the
12× 8 matrix and b is the 12× 1 vector given by

G =

(
A
B

)
, b =


y
0
0
0

 .

The systemGx = b has (in general) no solutions, as there are more equations than unknowns.
However, provided the 8×8 matrix GTG is invertible (i.e., det(GTG) 6= 0) the system admits
a unique least square solution, i.e., a unique solution of GTGx = GTb. The corresponding
portfolio is called the least square hedging portfolio and it is the portfolio that, in the
least square sense, better approximates a self-financing hedging portfolio. Note that the
least square hedging portfolio is in general neither hedging nor self-financing! However it is,
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in the least square sense, the “best” approximation of an hedging, self-financing portfolio.
For example if we let S0 = B0 = 100, eu = 1.05, er = 1.03 and we consider a call with strike
K = S0 = 100, then the possible pay-offs at time 2 are

Y (u, u) = 10.25, Y (u,m) = Y (m,u) = 5,

Y (u, d) = Y (m,m) = Y (d, u) = Y (m, d) = Y (d,m) = Y (d, d) = 0

and the least-square hedging portfolio is

hS(2, u) = 0.9903, hS(2,m) = 0.5371, hS(2, d) = −0.0112

hB(2, u) = −0.9335, hB(2,m) = −0.4899, hB(2, d) = 0.0095,

hS(1) = 0.8119, hB(1) = −0.7533.

Thus if the stock price goes up at time 1 and time 2, the value of the portfolio at maturity
is

hS(2, u)S0e
2u + hB(2, u)B0e

2r ≈ 10.14

which is actually not enough to hedge the derivative, since Y (u, u) = 10.25. Hence the seller
must add the cash 0.11 at maturity to pay-off the buyer. Moreover, still along the path
(u, u), there is a cash flow at time 1 given by

C(1) = hS(1)S0e
u + hB(1)B0e

r − (hS(2, u)S0e
u + hB(2, u)B0e

r) ≈ −0.17

which is negative, meaning that the seller has added this amount to the portfolio. Hence
along this path the seller would incur in the loss 0.17 + 0.11 = 0.28. This of course is the
worst case scenario for the writer as the path (u, u) gives the maximum value of the pay-off.

We also remark that the initial value of the portfolio is

V (0) = hS(1)S0 + hB(1)B0 ≈ 5.86

and this could be interpreted as the “fair price” at time 0 of the derivative, according to this
“almost self-financing hedging” portfolio.
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Chapter 3

A project on the Asian option

The risk-neutral pricing formula for European call and put options, and for other simple
standard European derivatives, reduces to a simple expression involving the standard normal
distribution, see (43) for the case of European calls. For Asian options, and other path-
dependent options, this reduction is not possible, and the application of numerical methods
to valuate these derivatives becomes essential. The Monte Carlo numerical method is the
most popular among practitioners. This project deals with applications of the Monte Carlo
method to compute the risk-neutral value of Asian options.

The Asian option

The Asian call/put option in the time-continuum case is defined as the non-standard Euro-
pean derivative with pay-off

Y call =

(
1

T

∫ T

0

S(t) dt−K
)

+

, Y put =

(
K − 1

T

∫ T

0

S(t) dt

)
+

,

where K > 0 is the strike price of the option. The Black-Scholes price at time t = 0 of these
options is given by

ΠAC(0) = e−rTEq[Y call], ΠAP(0) = e−rTEq[Y put].

Task 3.1 (*). Derive the following put-call parity identity:

ΠAC(0)− ΠAP(0) = e−rT
(
erT − 1

rT
S0 −K

)
. (3.1)

Task 3.2 (*). The Asian call with geometric average is the non-standard European derivative
with pay-off

Q =
(
e

1
T

∫ T
0 logS(t) dt −K

)
+
. (3.2)
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Show that the Black-Scholes price at time t = 0 of this derivative is given by

Π
(G)
AC (0) = e−rT (eqTS0Φ(d1)−KΦ(d2)) (3.3a)

where

q =
1

2
(r − σ2

6
), d2 = d1 − σ

√
T

3
, d1 =

log S0

K
+ 1

2
(r + σ2

6
)T

σ
√
T/3

.

HINT: You need to apply Theorem 0.10.

Monte Carlo valuation of the Asian option

Letting 0 = t0 < t1 < · · · < tN = T be a partition of the interval [0, T ] with size ti− ti−1 = h.
We approximate the pay-off of the Asian option on the given partition as

Y =

(
1

T

∫ T

0

S(t) dt−K
)

+

≈

(
1

N

N∑
i=1

S(ti)−K

)
+

.

Task 3.3 (Matlab). Write a Matlab code which computes the Black-Scholes price at time
t = 0 and the confidence interval of the Asian option using the crude Monte Carlo method.
Write also a code which applies the control variate Monte Carlo method using the pay-off of
the Asian option with geometric mean as control variate. Compare the new method with crude
Monte Carlo method and show that the control variate technique improves the performance
of the computation. Finally use the control variate Monte Carlo method to study numerically
how the price of the Asian call depend on the parameters of the option. In particular:

(a) Verify numerically the put-call parity (3.1)

(b) Show that the Asian call is less sensitive to volatility than the standard call. Do you
have an intuitive explanation for this?

(c) Show that for large volatility the Monte Carlo method becomes unstable (the confidence
interval grows very fast)

(d) Show that the Asian call is cheaper than the standard call with the same strike. Do
you have an intuitive explanation for this?
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Chapter 4

A project on coupon bonds

Coupon bonds are debt instruments issued by national governments as a way to borrow
money and fund their activities. Given the long maturity of coupon bonds (which can reach
up to 30 or more years), the valuation of these contracts must take into account the time
fluctuation of the risk-free rate. Once a stochastic model for the risk-free rate is prescribed,
the valuation of coupon bonds can be carried out using the so called “classical approach”,
which is based on the risk-neutral pricing formula. The main purpose of this project is to
numerically compute the yield curve of coupon bonds implied by a particular example of
stochastic risk-free rate model.

4.1 Zero-coupon bonds

A zero-coupon bond (ZCB) with face (or nominal) value K and maturity T > 0 is a
contract that promises to pay to its owner the amount K at time T in the future. Zero-
coupon bonds, and the related coupon bonds described in Section 4.2, are issued by national
governments and private companies as a way to borrow money and fund their activities.
Without loss of generality we assume from now on that K = 1, as owning a ZCB with face
value K is clearly equivalent to own K shares of a ZCB with face value 1. Moreover in the
following we assume that all ZCB’s are issued by one given institution, so that all bonds
differ merely by their maturities.

After being originally issued in the so-called primary market, the ZCB becomes a tradable
asset in the secondary bond market. It is therefore natural to model the value at time
t of the ZCB maturing at time T > t as a random variable, which we denote by B(t, T ).
Hence {B(t, T )}t∈[0,T ] is a stochastic process. We assume throughout the discussion that
the institution issuing the bond bears no risk of default, i.e., B(t, T ) > 0, for all t ∈ [0, T ].
Clearly B(T, T ) = 1 and, under normal market conditions, B(t, T ) < 1, for t < T , i.e., ZCB’s
are risk-free assets ensuring a positive return. However exceptions are possible; for instance
national bonds in Sweden with maturity shorter than 5 years yield currently (2017) a negative

59



return. A ZCB market is a market that consists of ZCB’s with different maturities. Our
main goal is to introduce models for the price of ZCB’s observed in the market. For modeling
purposes we assume that there is a ZCB in the market maturing at each time T ∈ [0, S],
where S is the maturity of the latest expiring ZCB in the market (e.g., S ≈ 30 years). Note
that this assumption is quite far from reality, one reason being that bonds with maturity
larger than, say, 2 years will most likely pay coupons.

Interest rates and yield of ZCB’s

The difference in value of ZCB’s with different maturities is expressed through the implied
forward rate of the bond. To define this concept, suppose that at the present time t we open
a portfolio that consists of −1 share of a ZCB with maturity t < T and B(t, T )/B(t, T + δ)
shares of a ZCB expiring at time T + δ. This investment has zero value and entails that we
pay 1 at time T and receive B(t, T )/B(t, T + δ) at time T + δ. Hence our investment at
the present time t is equivalent to an investment in the future time interval [T, T + δ] with
(annualized) return given by

Fδ(t, T ) =
1

δ
(B(t, T )/B(t, T + δ)− 1) =

B(t, T )−B(t, T + δ)

δB(t, T + δ)
. (4.1)

The quantity Fδ(t, T ) is also called discretely compounded forward rate in the interval
[T, T+δ] locked at time t (or forward LIBOR, as it is commonly applied to LIBOR interest
rate contracts). The name is intended to emphasize that the investment return in the future
interval [T, T + δ] is locked at the present time t ≤ T , that is to say, we know today which
interest rate has to be charged to borrow in the future time interval [T, T + δ] (if a different
rate were locked today, then an arbitrage opportunity would arise). When δ → 0+ we obtain
the continuously compounded T -forward rate

f(t, T ) = lim
δ→0+

1

δ

B(t, T )−B(t, T + δ)

B(t, T + δ)
= −∂T logB(t, T ), (4.2)

which is the rate locked at time t to borrow at time T for an “infinitesimal” period of time.
In the following we shall consider only continuously compounded rates.

The curve T → f(t, T ) is called forward rate curve of the ZCB market. The knowledge
of the forward rate curve determines the price B(t, T ) of all ZCB’s in the market through
the formula

B(t, T ) = exp

(
−
∫ T

t

f(t, s) ds

)
, 0 ≤ t ≤ T ≤ S, (4.3)

which follows easily by integrating (4.2).

The quantity

r(t) = f(t, t), t ∈ [0, S] (4.4)
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is called the (continuously compounded) spot rate of the ZCB market at time t and
represents the interest rate locked at time t to borrow instantaneously at time t (i.e., on the
spot).

The spot rate can be used to define the discount process:

d(t) = exp

(
−
∫ t

0

r(s) ds

)
(continuously compounded) (4.5)

If t is the present time and X(τ) is the value of an asset at some given future time τ > t,
then the quantity

d(τ)

d(t)
X(τ) = exp

(
−
∫ τ

t

r(s) ds

)
X(τ)

is called the present (at time t) discounted value of the asset and represents the future (at
time τ) value of the asset relative to the purchasing value of money at that time.

We conclude this section by presenting the fundamental concept of ZCB’s yield to maturity.
The (continuously compounded) yield (to maturity) y(t, T ) at time t of the ZCB with
maturity T is the constant forward rate which entails the value B(t, T ) of the ZCB. Hence
the yield y(t, T ) of a ZCB is obtained by replacing f(t, v) = y(t, T ) in (4.3), i.e.,

B(t, T ) = e−y(t,T )(T−t), i.e., y(t, T ) = − logB(t, T )

T − t
(4.6)

To put it in other words: Selling a ZCB for the price B(t, T ) at time t (i.e., borrowing B(t, T )
at time t) is equivalent to lock the constant forward rate y(t, T ) until maturity. Note also
that the first equation in (4.6) expresses B(t, T ) as the discounted value at time t of the
future payment = 1 at maturity assuming that the spot rate is constant and equal to y(t, T )
in the interval [t, T ].

4.2 Coupon bonds

Let 0 < t1 < t2 < · · · < tM = T be a partition of the interval [0, T ]. A coupon bond with
maturity T , face value 1 and coupons c1, c2, . . . , cM ∈ [0, 1) is a contract that promises to pay
the amount ck at time tk and the amount 1+cM at maturity T = tM . Note that some ck may
be zero, which means that no coupon is actually paid at that time. We set c = (c1, . . . , cM)
and denote by Bc(t, T ) the value at time t of the bond paying the coupons c1, . . . , cM and
maturing at time T . Now, let t ∈ [0, T ] and k(t) ∈ {1, . . . ,M} be the smallest index such
that tk(t) > t, that is to say, tk(t) is the first time after t at which a coupon is paid. Holding
the coupon bond at time t is clearly equivalent to holding a portfolio containing ck(t) shares
of the ZCB expiring at time tk(t), ck(t)+1 shares of the ZCB expiring at time tk(t)+1, and so
on, hence

Bc(t, T ) =
M−1∑
j=k(t)

cjB(t, tj) + (1 + cM)B(t, T ), (4.7)
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the sum being zero when k(t) = M .

The yield of a coupon bond is defined implicitly by the equation

Bc(t, T ) =
M−1∑
j=k(t)

cje
−yc(t,T )(tj−t) + (1 + cM)e−yc(t,T )(T−t) (4.8)

and so the yield of the coupon bond is the constant spot rate used to discount the total future
payments of the coupon bond.

Remark 4.1. Most commonly the coupons are equal. Letting cj = c, for all j = 1, . . . ,M ,
the formula (4.8) simplifies to

Bc(t, T ) = c

M−1∑
j=k(t)

e−yc(t,T )(tj−t) + (1 + c)e−yc(t,T )(T−t). (4.9)

To compute the yield of a coupon bond with values Bc(t, T ), one has to invert (4.9). For
instance, assume that T = M years and that the coupons are paid annually, that is t1 = 1,
t2 = 2, . . . , tM = M . Then x = e−yc(0,T ) solves p(x) = 0, where p is the M -order polynomial
given by

p(x) = c1x+ c2x
2 + · · ·+ (1 + cM)xM −Bc(0, T ). (4.10)

The roots of this polynomial can easily be computed numerically, e.g., with the command
roots[p] in matlab, see Task 4.4 below.

Yield curve

(Zero) coupon bonds are listed in the market in terms of their yield rather than in terms of
their price. The curve T → yc(t, T ) is called the yield curve of the ZCB market. Figure 4.1
shows an example of yield curve for governmental Swedish bonds.

Task 4.1 (*). Yield curves observed in the market are classified based on their shape (e.g.,
steep, flat, inverted, etc.). Find out on the Internet what the different shapes mean from an
economical point of view and write a short text (one page) about this.

4.3 The classical approach to ZCB’s pricing

In this section we describe the so-called classical approach to ZCB’s pricing. This approach
is based on the risk-neutral pricing formula.

Definition 4.1. Let {r(t)}t≥0 be a stochastic process modeling the spot interest rate of the
ZCB market, where we assume that r(0) = r0 is a deterministic constant. Then

B(0, T ) = E[d(T )] = E[e−
∫ T
0 r(s) ds]. (4.11)
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Figure 4.1: Yield curve for Swedish bonds. Note that the yield is negative for maturities
shorter than 5 years. Bonds with maturity larger than 2 years have coupon and thus their
yield is computed using (4.8) (instead of (4.6)).

Hence the value at time t = 0 of the ZCB is the expected value of the discounted future pay-
ment = 1 of the ZCB. Note that in a purely ZCB market, one cannot define a martingale, or
risk-neutral, probability, hence the expectation in (4.11) is taken in the physical probability.
Equivalently, in the classical approach to ZCB’s pricing, the physical probability is assumed
to be risk-neutral.

In the following two tasks it is asked to compute the exact value of B(0, T ) when the spot
rate is given by two simple models, namely the Ho-Lee model and the Vasicek model.

Task 4.2 (*). In the Ho-Lee model, the risk-free rate is assumed to satisfy

r(t) = r(0) + θ(t) + σW (t), θ(0) = 0, (4.12)

where {W (t)}t≥0 is a Brownian motion, σ > 0 is constant and θ(t) is a deterministic function
of time. Derive the initial price B(0, T )of the ZCB with face value 1 and maturity T > 0
and the forward rate f(0, T ) implied by the Ho-Lee model. Sketch the graph T → f(0, T )
of the forward curve at time t = 0 (experiment for different functions θ). HINT: You need
Theorem 0.10.
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Task 4.3 (*). In the Vasicek model, the risk-free rate is assumed to satisfy

r(t) = r(0)e−at + b(1− e−at) + σW (t)− aσ
∫ t

0

ea(s−t)W (s) ds, (4.13)

where {W (t)}t≥0 is a Brownian motion and a > 0, b ∈ R, σ > 0 are constants. Note that, by
Theorem 0.10, r(t) is normally distributed. Show that the initial price of the ZCB with face
value 1 and maturity T > 0 is given by

B(0, T ) = e−r(0)A(T )+C(T ), (4.14a)

where

A(T ) =
1

a
(1− e−aT ), (4.14b)

C(T ) =

(
b− σ2

2a2

)
(A(T )− T )− σ2

4a
A(T )2. (4.14c)

HINT: You need Theorem 0.10.

Remark 4.2. By using the notation in Remark 0.9, we can write the definition of r(t) in
the Vasicek model as

r(t) = r(0) + b(eat − 1) + σ

∫ t

0

easdW (s),

which is the form of r(t) most used in the literature.

Task 4.4 (Matlab). Part I. Write a matlab function

yield(B, Coupon, FirstCoupDate, CoupFreq, T)

that computes the continuously compounded yield of a coupon bond. Here, B is the current
(i.e., at time t = 0) price of the coupon bound, Coupon ∈ [0, 1) is the (constant) coupon,
FirstCoupDate is the first future date at which the coupon is paid, CoupFreq is the frequency
of coupon payments and T is the time left to maturity maturity. For example1

yield(1.01, 0.02, 46/252, 1, 19 + 201/252)

computes the yield of a 2% coupon bond which today is valued 1.01, pays the first coupon
in 46 days and matures in 19 years and 201/252 days. Part II. Let {r(t)}t≥0 be given by
the Vasicek model with parameters a, b, σ. Apply the code in Part I to perform a parameter
sensitivity analysis of the yield curve. Can you reproduce all the typical shapes found in
Exercise 4.1?

1Remember that time in finance is measured in fraction of years and 1 year = 252 days (unless otherwise
stated in the contract).

64



Chapter 5

A project on multi-asset options

Multi-asset options are financial derivatives on several underlying assets. In this project we
consider standard European derivatives on two stocks, i.e., European style derivatives with
pay-off of the form Y = g(S1(T ), S2(T )), where S1(t), S2(t) are the prices of the underlying
stocks at time t ∈ [0, T ] and T > 0 is the time of maturity of the derivative. After the
Black-Scholes theory for single stock options is generalized to the two dimensional case, the
Monte Carlo method is applied to compute the price of maximum call options on two stocks.

5.1 Examples of options on two stocks

Given K1, K2 > 0, a two assets correlation call option with maturity T is the European
derivative with pay-off

Y =

{
(S2(T )−K2)+ if S1(T ) > K1

0 otherwise
.

A maximum call option on two stocks with maturity T is the European style derivative
with pay-off Y = max((S1(T )−K1)+, (S2(T )−K2)+), and similarly one defines the minimum
call option on two stocks and the analogous put options.

The European derivative with maturity T and pay-off

Y = (S1(T )− S2(T ))+

is called a spread option (or exchange asset option). The European derivative with
maturity T and pay-off

Y =

(
S1(T )

S2(T )
−K

)
+

is called a relative outperformance option.
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A quanto option is a call or put option on a stock in which the pay-off is paid in a different
currency than the one in which the stock is traded. Thus, letting Ξ(t) be the exchange rate
of the two currencies at time t, the pay-off of a quanto call option with maturity T is

Y = Ξ(T )(S(T )−K)+.

Note that in this example the second asset is not at stock but a market index (the exchange
rate Ξ(t)).

The list of examples could go on, but we stop here. New types of multi-asset options are
created frequently. All multi-asset options are traded OTC.

5.2 Black-Scholes price of 2-assets standard European

derivatives

In Black-Scholes theory of two-dimensional markets it is assumed that the stocks prices are
given by a 2-dimensional geometric Brownian motion, namely:

S1(t) = S1(0)eα1t+σ11W1(t)+σ12W2(t), (5.1a)

S2(t) = S2(0)eα2t+σ21W1(t)+σ22W2(t), (5.1b)

where {W1(t)}t≥0, {W2(t)}t≥0 are independent Brownian motions in the physical probability
P and α1, α2, σ11, σ12, σ21, σ22 are real constants. We assume that the volatility matrix
σ = (σij) is invertible. Letting

W (t) = (W1(t),W2(t)), σ1 = (σ11, σ12), σ2 = (σ21, σ22),

we can rewrite the 2-dimensional geometric Brownian motion in the more concise form

Sj(t) = Sj(0)eαjt+σj ·W (t),

where · denotes the standard scalar product of vectors. We start by deriving the joint density
of the stocks prices.

Theorem 5.1. The random variables logS1(t), logS2(t) are jointly normally distributed with
mean m = (logS1(0) + α1t, logS2(0) + α2t) and covariant matrix C = tσσT . In particular,
the random variables S1(t), S2(t) have the joint density

fS1(t),S2(t)(x, y) =
e
− 1

2t

(
log x

S(0) − α1t log y
S(0) − α2t

)
(σσT )−1

log x
S(0) − α1t

log y
S(0) − α2t


txy
√

(2π)2 det(σ · σT )
. (5.2)
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Proof. We have

logS1(t) = log S1(0) + α1t+ σ11W1(t) + σ12W2(t),

logS2(t) = log S2(0) + α2t+ σ21W1(t) + σ22W2(t),

hence the first statement of the theorem follows by Theorem 0.9. The joint density of
S1(t), S2(t) is computed using that

FS1(t),S2(t)(x, y) = P(S1(t) ≤ x, S2(t) ≤ y)

= P(logS1(t) ≤ log x, logS2(t) ≤ log y) = FlogS1(t),logS2(t)(log x, log y),

hence

fS1(t),S2(t)(x, y) = ∂x∂yFS1(t),S2(t)(x, y) = ∂x∂y[FlogS1(t),logS2(t)(log x, log y)]

= (xy)−1flogS1(t),logS2(t)(log x, log y),

which, using the joint normal density of logS1(t) and logS2(t), gives (5.2).

The geometric Brownian motion is often given in a different but equivalent (in distribution)
form, as shown in the next Task.

Task 5.1 (*). Show that the process (5.1) is equivalent, in distribution, to the process

S1(t) = S1(0)eα1t+|σ1|W1(t) (5.3a)

S2(t) = S2(0)eα2t+|σ2|(ρW1(t)+
√

1−ρ2W2(t)), (5.3b)

where |σi| =
√
σ2
i1 + σ2

i2 is the Euclidean norm of the vector σi and

ρ =
σ1 · σ2

|σ1||σ2|
∈ [−1, 1] (5.4)

is the cosine of the angle between σ1, σ2.

Remark 5.1. It can be shown the historical variances of the two stocks are unbiased
estimators for |σ1|2, |σ2|2, while the historical correlation of log-returns of the two stocks is
an unbiased estimator for ρ.

Now, exactly as in the one-dimensional case discussed in Section 0.4, it is possible to define a
risk-neutral (or martingale) probability measure with respect to which the discounted value
of both stocks are martingales. We seek this probability measure in the class of Girsanov
probabilities Pθ introduced in Theorem 0.14, where θ = (θ1, θ2) ∈ R2. The problem is solved
in the following two theorems, which are the 2-dimensional generalizations of Theorem 0.17
and Theorem 0.18 respectively.
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Theorem 5.2. Let µ = (α1 − r + 1
2
|σ1|2, α2 − r + 1

2
|σ1|2). The discounted values S∗1(t) =

e−rtS1(t) and S∗2(t) = e−rtS2(t) of the stocks have constant expectation in the Girsanov
probability Pθ if and only if θ = q = (q1, q2), where q is the (unique) solution of the linear
system σq = µ.

Theorem 5.3. The stochastic processes {S∗1(t)}t≥0 and {S∗2(t)}t≥0 are martingales in the
probability measure Pθ if and only if θ = q = (q1, q2).

Task 5.2 (*). Prove Theorem 5.2.

The probability measure Pq is the martingale (or risk-neutral) probability of the 2-dimensional
Black-Scholes market.

Task 5.3 (*). Prove that in the probability Pq the stocks prices are given by the following
2-dimensional geometric Brownian motion

S1(t) = S1(0)e(r− |σ1|
2

2
)t+σ1·W (q)(t), (5.5a)

S2(t) = S2(0)e(r− |σ2|
2

2
)t+σ2·W (q)(t), (5.5b)

where W (q)(t) = (W
(q)
1 (t),W

(q)
2 (t)) = (W1(t)+q1t,W2(t)+q2t) and {W (q)

1 (t)}t≥0, {W (q)
1 (t)}t≥0

are Pq-independent Brownian motions.

Denoting by Eq the expectation in the probability Pq, the Black-Scholes price at time t = 0
of the 2-assets European derivative with pay-off Y at maturity T is given by the risk-neutral
pricing formula ΠY (0) = e−rTEq[Y ].

Example: relative outperformance options

For the relative outperformance call option with strike K the pay-off function is given by

g(x, y) =

(
x

y
−K

)
+

.

Let’s compute the Black-Scholes price at time t = 0 using the risk-neutral pricing formula
ΠY (0) = e−rTEq[g(S1(T ), S2(T ))], i.e., using (5.5),

ΠY (0) = e−rTEq
[(

S1(T )

S2(T )
−K

)
+

]
= e−rTEq

[(
S1(0)

S2(0)
e(
|σ2|

2

2
− |σ1|

2

2
)T+(σ1−σ2)·W (q)(T ) −K

)
+

]
,

where we recall that W (q)(t) = (W
(q)
1 (t),W

(q)
2 (t)) and {W (q)

1 (t)}t≥0, {W (q)
1 (t)}t≥0 are inde-

pendent Brownian motion in the risk-neutral probability measure. Now we write

(σ1 − σ2) ·W (q)(T ) =
√
T [(σ11 − σ21)G1 + (σ12 − σ22)G2] =

√
T (X1 +X2),
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where Gj = W
(q)
j (T )/

√
T ∈ N (0, 1), j = 1, 2, hence Xj ∈ N (0, (σ1j − σ2j)

2), j = 1, 2. In
addition, X1, X2 are independent random variables, hence X1 + X2 is normally distributed
with zero mean and variance (σ11 − σ21)2 + (σ12 − σ22)2 = |σ1 − σ2|2 (see Theorem 0.9). It
follows that

ΠY (0) = e−rTEq
[(

S1(0)

S2(0)
e(
|σ2|

2

2
− |σ1|

2

2
)T+
√
T |σ1−σ2|G) −K

)
+

]
,

where G ∈ N (0, 1). Hence, letting

r̂ =
|σ1 − σ2|2

2
+

(
|σ2|2

2
− |σ1|2

2

)
and a = e(r̂−r)τ , we have

ΠY (0) = ae−r̂TEq
[(

S1(0)

S2(0)
e(r̂− |σ1−σ2|

2

2
)T+
√
T |σ1−σ2|G −K

)
+

]
.

Up to the multiplicative parameter a, this is the Black-Scholes price at time t = 0 of a call
on a stock with price S1(0)/S2(0), volatility |σ1 − σ2| and for an interest rate of the money
market given by r̂. Hence

ΠY (0) = a

(
S1(0)

S2(0)
Φ(d+)−Ke−r̂TΦ(d−)

)
:= v0(S1(0), S2(0)), (5.6)

where

d± =
log S1(t)

KS2(t)
+ (r̂ ± |σ1−σ2|

2

2
)τ

|σ1 − σ2|
√
τ

.

Task 5.4 (Matlab). Write a Matlab function

MaximumCall(K1, K2, T, s1, s2, sigma1, sigma2, rho, r, N, n)

which applies the crude Monte Carlo method to compute the initial price (at time t = 0) of
the maximum call option with strikes K1, K2 and expiring at time T . Here s1, s2 are the
initial prices of the stocks, sigma1, sigma2 are the volatilities of the stocks and rho is their
correlation (in the notation (5.3), sigma1= |σ1|). Moreover N is the number of points in a
uniform partition of [0, T ] and n is the number of paths used for the Monte Carlo simulation.
Use this function to perform a parameter sensitivity analysis of the maximum call option.

Integral form of the Black-Scholes price for general standard Euro-
pean derivatives on two stocks

In the case of standard European derivatives the risk-neutral pricing formula ΠY (0) =
e−rTE[g(S1(T ), S2(T )] can be written in a closed integral form, as shown in the following
analog of Theorem 0.19.
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Theorem 5.4. The Black-Scholes price at time t = 0 of the 2-stocks option with pay-off
Y = g(S1(T ), S2(T )) is given by

ΠY (0) = v0(S1(0), S2(0)), (5.7a)

where the pricing function v0 is given by

v0(x, y) =

∫
R2

g

(
xe(r− |σ1|

2

2
)T+
√
Tξ, ye(r− |σ2|

2

2
)T+
√
Tη

) exp

(
−1

2

(
ξ η

)
(σσT )−1

(
ξ
η

))
2π
√

det(σσT )
dξ dη.

(5.7b)

Sketch of the proof. The proof follows by using the joint density of S1(T ), S2(T ) in the risk-
neutral probability to compute Eq[Y ]. Namely, according to (5.5), the stock prices in the
risk-neutral probability are given by a geometric Brownian motion with mean of log-returns
αj = r − 1

2
|σ2
j |, j = 1, 2. Replacing these values of α1, α2 into (5.2) gives the joint density

f̃S1(t),S2(t)(x, y) of the stock prices in the risk-neutral probability, from which we can compute
ΠY (0) = e−rTEq[g(S1(T ), S2(T )] as

ΠY (0) = e−rT
∫
R2

g(x, y)f̃S1(T ),S2(T )(x, y) dx dy.

After a proper change of variable, the previous expression transforms into (5.7).

The Black-Scholes price at time t > 0 of the 2-assets European derivative with pay-off
Y = g(S1(T ), S2(T )) is given by a formula similar to the one in Theorem 5.4, namely

ΠY (t) = v(t, S1(t), S2(t)),

where the pricing function v is given by

v(t, x, y) =

∫
R2

g

(
xe(r− |σ1|

2

2
)τ+
√
τξ, ye(r− |σ2|

2

2
)τ+
√
τη

) exp

(
−1

2

(
ξ η

)
(σσT )−1

(
ξ
η

))
2π
√

det(σσT )
dξ dη. (5.8)

Moreover it can be shown that the number of shares on the two stocks in the self-financing
hedging portfolio of the derivative is given by

hS1(t) = ∂xv(t, S1(t), S2(t)), hS2(t) = ∂yv(t, S1(t), S2(t)),

while the number of shares hB(t) on the risk-free asset is determined by the replicating
condition ΠY (t) = hS1(t)S1(t) + hS2(t)S2(t) + hB(t)B(t), i.e.,

hB(t) = B(t)−1(ΠY (t)− hS1(t)S1(t)− hS2(t)S2(t)).
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