MVE171 Basic Stochastic Processes and Financial Applications Written exam Monday 6 April 2020 8.30 AM-11.30 AM

TEACHER AND EXAMINER: Patrik Albin, 0317723512, palbin@chalmers.se.

AIDS: All aids are permitted. (See the Canvas announcement with instructions for Eastern reexam for clarification.)

GRADES: 8, 12 and 16 points for grades 3, 4 and 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Task 1. Consider an M/M/1/3 queueing system with one server and two queueing slots with $\lambda = 1$ and $\mu = 1/2$. Write a computer programme that by means of stochastic simulation finds an approximation of the mean of the time until the system becomes empty (when the queueing system is in steady state as usual). (5 points)

Task 2. Consider a Poisson process X(t), $t \ge 0$. Is it possible to have $\mathbf{P}\{X(1) = 0, X(2) = 0, \dots, X(n) = 0\} = \mathbf{P}\{X(1) = 2, X(2) = 4, \dots, X(n) = 2n\}$? (5 points)

Task 3. Let X_n , n = 0, 1, 2, ..., be a discrete time Markov chain with transition probability matrix P. Is it true in general that $(P^{-1})_{ij} = \mathbf{P}\{X_n = i | X_{n+1} = j\}$? Can the same claim be true for some special case of P? (5 points)

Task 4. Let W(t), $t \ge 0$, be a Wiener process that is independent of a unit intensity (/rate) Poisson process N(t), $t \ge 0$. Show that $M(t) = e^{2t}(-1)^{N(t)}W(t)$, $t \ge 0$, is a martingale with respect to the filtration F_t containing information of all process values $\{W(s)\}_{s\in[0,t]}$ and $\{N(s)\}_{s\in[0,t]}$. (5 points)