MVE172 Basic Stochastic Processes and Financial Applications Written exam Saturday 5 December 2020 8.30-11.30 AM

Teacher: Patrik Albin palbin@chalmers.se 0317723512.
Aids: All aids are permitted. (See the Canvas course "Ordinarie tentamen Modul: 0220, MVE172" with instructions for this reexam for clarifications.)

GRADES: 8 points for grade 3,12 points for grade 4 and 16 points for grade 5 , respectively.

Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. Is the process $Y(t)=\mathrm{e}^{X(t)}$ WSS when $\{X(t)\}_{t \in \mathbb{R}}$ is a WSS Gaussian process? [Hint: Stationary implies WSS for processes in general and WSS implies stationary for Gaussian processes.] (5 points)

Task 2. Consider a Markov chain $\left\{X_{k}\right\}_{k=0}^{\infty}$ with possible values $\{0,1,2\}$, initial state probabilities $p(0)=\left(\begin{array}{lll}1 / 3 & 1 / 3 & 1 / 3\end{array}\right)$ and all transition probabilitites $p_{i j}=1 / 3$. Calculate $\mathbf{E}\{T\}$ for $T=\min \left\{k \geq 0: X_{k}=2\right\}$. (5 points)

Task 3. Calculate the probability $\mathbf{P}\left\{X_{1}(1 / 2) X_{2}(1) X_{3}(3 / 2)=2\right\}$ when $X_{1}(t), X_{2}(t)$ and $X_{3}(t), t \geq 0$, are independent \mathbb{N}-valued continuous time random processes with $\mathbf{P}\left\{X_{1}(t)=k\right\}=\mathbf{P}\left\{X_{2}(t)=k\right\}=\mathbf{P}\left\{X_{3}(t)=k\right\}=\frac{t^{k}}{k!} \mathrm{e}^{-t}$ for $k=0,1,2, \ldots$.
(5 points)

Task 4. Let $\{X(t)\}_{t \geq 0}$ be a zero-mean Gaussian stationary independent increment process with autocorrelation function $R_{X}(s, t)=\min (s, t)$. What functions $f(t)>0$ make $\{f(t) \cos (X(t))\}_{t \geq 0}$ a martingale with respect to the filtration $F_{t}=\sigma(X(s): s \in$ $[0, t])$. [Hint: $\mathbf{E}\{\cos (\mathrm{N}(0, t))\}=\mathrm{e}^{-t / 2}$.]

MVE172 Solutions to written exam December 2020

Task 1. As $X(t)$ is WSS Gaussian it is stationary and then also $\mathrm{e}^{X(t)}$ is stationary and therefore WSS.

Task 2. With probability $1 / 3$ we have $X_{0}=2$ so that $T=0$. Otherwise, on the average it takes the chain the mean 3 of a waiting time distribution with $p=1 / 3$ to move from the states $\{0,1\}$ to the state 2 . Hence $\mathbf{E}\{T\}=1 / 3 \cdot 0+2 / 3 \cdot 3=2$.

Task 3. The possible values of $\left(X_{1}(1 / 2), X_{2}(1), X_{3}(3 / 2)\right)$ are $(2,1,1),(1,2,1)$ and $(1,1,2)$ with probability $\left(\frac{(1 / 2)^{2}}{2!} \cdot \frac{1^{1}}{1!} \cdot \frac{(3 / 2)^{1}}{1!}+\frac{(1 / 2)^{1}}{1!} \cdot \frac{1^{2}}{2!} \cdot \frac{(3 / 2)^{1}}{1!}+\frac{(1 / 2)^{1}}{1!} \cdot \frac{1^{1}}{1!} \cdot \frac{(3 / 2)^{2}}{2!}\right) \mathrm{e}^{-1 / 2-1-3 / 2}$ $=\frac{9}{8} \mathrm{e}^{-3}$.

Task 4. As $\mathbf{E}\left\{\cos (X(t)) \mid F_{s}\right\}=\mathbf{E}\left\{\cos (X(t)-X(s)) \cos (X(s)) \mid F_{s}\right\}-\mathbf{E}\{\sin (X(t)-X(s))$ $\left.\times \sin (X(s)) \mid F_{s}\right\}=\cos (X(s)) \mathbf{E}\{\cos (X(t)-X(s))\}-\sin (X(s)) \mathbf{E}\{\sin (X(t)-X(s))\}=$ $\cos (X(s)) \mathrm{e}^{-(t-s) / 2}-\sin (X(s)) \cdot 0$ for $0 \leq s \leq t$ it is required that $f(t)=C \mathrm{e}^{t / 2}$ for some constant $C>0$ [as we required $f(t)$ to be positive].

