1 Analytical solution of computational task 1

Writing E_{n} for the expected value of the time it takes to reach the terminal state 2 starting in state $n=0,1,2$ we have the equations

$$
E_{0}=1+(1 / 2) \cdot E_{0}+(1 / 3) \cdot E_{1}+(1 / 6) \cdot E_{2}, \quad E_{1}=1+(2 / 3) \cdot E_{1}+(1 / 3) \cdot E_{2} \quad \text { and } \quad E_{2}=0
$$

with solution $\left(E_{0}, E_{1}\right)=(4,3)$. Here E_{0} is the expected value $E(T)$ asked for in the task.
On the left hand side of the two first equations we start at states 0 and 1 , respectively, and on the right hand side we look one unit ahead in time (thus adding 1 to the expectation on the left hand side) and use the transition matrix P to calculate how likely it is that the journey to state 2 continues from the different possible states $(0,1,2)$ and $(1,2)$, respectively.

2 Quick proof of Stirling's formula for n ! as $n \rightarrow \infty^{*}$

By the relation between faculties and the Gamma function, by Taylor expansion of $\ln (1+x)$ around $x=0$, and by recognition of a Gaussian PDF at the last step, we have, as $n \rightarrow \infty$,

$$
\begin{aligned}
n!=\int_{0}^{\infty} x^{n} \mathrm{e}^{-x} d x=\int_{-n}^{\infty}(y+n)^{n} \mathrm{e}^{-y-n} d y & =n^{n} \mathrm{e}^{-n} \int_{-n}^{\infty} \mathrm{e}^{n \ln (1+y / n)-y} d y \equiv(\star) \\
& =n^{n} \mathrm{e}^{-n} \int_{-n}^{\infty} \mathrm{e}^{-y^{2} /(2 n)+o\left(y^{2} / n\right)} d y \sim \sqrt{2 \pi n} n^{n} \mathrm{e}^{-n}
\end{aligned}
$$

3 Justification of last row of above proof of Stirling's formula**

Clearly, by mentioned Taylor expansion, the expression (\star) is greater or equal than

$$
n^{n} \mathrm{e}^{-n} \int_{-n^{3 / 4}}^{n^{3 / 4}} \mathrm{e}^{-(1+\varepsilon) y^{2} /(2 n)} d y \sim \sqrt{\frac{2 \pi n}{1+\varepsilon}} n^{n} \mathrm{e}^{-n}
$$

for any $\varepsilon>0$, for n large enough, where we can $\varepsilon \downarrow 0$ afterwards.
On the other hand, as $\ln (1+x)-x+x^{2} / 2 \leq 0$ for $x \leq 0$, the Taylor expansion shows that for each $\varepsilon>0$ there exists $\delta>0$ such that

$$
n^{n} \mathrm{e}^{-n} \int_{-n}^{\delta n} \mathrm{e}^{n \ln (1+y / n)-y} d y \leq n^{n} \mathrm{e}^{-n} \int_{-n}^{\delta n} \mathrm{e}^{-(1-\varepsilon) y^{2} /(2 n)} d y \sim \sqrt{\frac{2 \pi n}{1-\varepsilon}} n^{n} \mathrm{e}^{-n}
$$

for n large enough. Further, as $\ln (1+x)-(1-\delta / 2) x \leq 0$ for $x \geq \delta$ and $\delta \in(0,1]$, we have

$$
\int_{\delta n}^{\infty} \mathrm{e}^{n \ln (1+y / n)-y} d y=n \int_{\delta}^{\infty} \mathrm{e}^{n \ln (1+z)-n z} d z \leq n \int_{\delta}^{\infty} \mathrm{e}^{-(\delta / 2) n z} d z \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

