1 Analytical solution of computational task 1

Writing F,, for the expected value of the time it takes to reach the terminal state 2 starting in

state n = 0, 1,2 we have the equations
Eo=1+(1/2)-Eo+(1/3)-E1 +(1/6)-Ey, E1=1+(2/3)-E1+(1/3)-E2 and FE; =0

with solution (Ey, E1) = (4,3). Here Ej is the expected value E(T") asked for in the task.

On the left hand side of the two first equations we start at states 0 and 1, respectively, and
on the right hand side we look one unit ahead in time (thus adding 1 to the expectation on the
left hand side) and use the transition matrix P to calculate how likely it is that the journey to

state 2 continues from the different possible states (0,1,2) and (1,2), respectively.

2 Quick proof of Stirling’s formula for n! as n — oo™

By the relation between faculties and the Gamma function, by Taylor expansion of In(1+ x)
around x =0, and by recognition of a Gaussian PDF at the last step, we have, as n — oo,
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3 Justification of last row of above proof of Stirling’s formula**

Clearly, by mentioned Taylor expansion, the expression (%) is greater or equal than
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for any € > 0, for n large enough, where we can ¢ | 0 afterwards.
On the other hand, as In(1+z) —z +22/2 < 0 for # <0, the Taylor expansion shows that for
each € > 0 there exists § > 0 such that
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for n large enough. Further, as In(14+z) — (1—§/2)z < 0 for >0 and 0 € (0, 1], we have
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