MVE172 Basic Stochastic Processes and Financial Applications Written exam Saturday 4 December 2021 8.30-11.30 AM

Teacher and telephone jour: Patrik Albin 0317723512
AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids). GRADES: 8, 12 and 16 points for grades 3,4 and 5 , respectively. Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. Let Y_{1}, Y_{2}, Y_{3} and Y_{4} be independent standard normal random variables (with zero expectation and unit variance) and put $X_{1}=\left(Y_{1}+Y_{2}\right) / \sqrt{2}, X_{2}=\left(Y_{1}+Y_{2}+Y_{3}\right.$ $\left.+Y_{4}\right) / 2$ and $X_{3}=\left(Y_{1}-Y_{2}\right) / \sqrt{2}$. State with reason if the following is true:
(a) X_{1}, X_{2} and X_{3} are all standard normal random variables.
(1,25 points)
(b) $X_{i}, i=1,2,3$, is a Gaussian random process.
(1,25 points)
(c) X_{1} and X_{2} are independent random variables.
(1,25 points)
(d) X_{1} and X_{3} are independent random variables.
(1,25 points)
Task 2. Let $\left\{X_{k}\right\}_{k=0}^{\infty}$ be a (time homogeneous) Markov chain. Is it true that $\mathbf{P}\left\{X_{k}=\right.$ $\left.i_{k} \mid X_{k+1}=i_{k+1}, \ldots, X_{k+n}=i_{k+n}\right\}=\mathbf{P}\left\{X_{k}=i_{k} \mid X_{k+1}=i_{k+1}\right\}$ for $n \geq 1$? (5 points)

Task 3. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be random variables and $F_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. Under what conditions is $M_{n}=\sum_{i=1}^{n} X_{i}$ a martingale with respect to F_{n} ? (5 points)

Task 4. Let T_{1} and T_{2} be the times for the first and second jump of a Poisson process with rate $\lambda>0$. Find the joint probability density function of T_{1} and T_{2}. Hint: $\mathbf{P}\left\{T_{1} \leq s, T_{2} \leq t\right\}=\mathbf{P}\{X(s) \geq 1, X(t) \geq 2\} . \quad$ (5 points)

MVE172 Solutions to written exam 4 December 2021

Task 1. (a) As all X_{i} 's are linear combination of independent normal random variables they are normal distributed. Calculations of means and variances give zero and one.
(b) All linear combination of the X_{i} 's are linear combination of the independent normal distributed Y_{i} 's and therefore are normal distributed. Hence $X_{i}, i=1,2,3$, is Gaussian.
(c) X_{1} and X_{2} are not independent because $\operatorname{Cov}\left\{X_{1}, X_{2}\right\}=1 / \sqrt{2} \neq 0$.
(d) X_{1} and X_{3} are independent because they are jointly normal with $\operatorname{Cov}\left\{X_{1}, X_{3}\right\}=0$.
 $=\frac{\mathbf{P}\left\{X_{k}=i_{k}\right\} p_{i_{k}, i_{k+1}}}{\mathbf{P}\left\{X_{k+1}=i_{k+1}\right\}}=\mathbf{P}\left\{X_{k}=i_{k} \mid X_{k+1}=i_{k+1}\right\}$ so yes.

Task 3. $\mathbf{E}\left\{\left|X_{n}\right|\right\}<\infty$ and $\mathbf{E}\left\{X_{n+1} \mid F_{n}\right\}=0$ for all n.
Task 4. $f_{T_{1}, T_{2}}(s, t)=\frac{\partial^{2}}{\partial s \partial t} \mathbf{P}\{X(s) \geq 1, X(t) \geq 2\}=\frac{\partial^{2}}{\partial s \partial t} \mathbf{P}\{X(s)=1\} \mathbf{P}\{X(t-s) \geq$ $1\}+\frac{\partial^{2}}{\partial s \partial t} \mathbf{P}\{X(s) \geq 2\}=\ldots=\lambda^{2} \mathrm{e}^{-\lambda t}$ for $0 \leq s \leq t$.

