MVE172 Basic Stochastic Processes and Financial Applications Written exam Saturday 4 December 2021 8.30–11.30 AM

TEACHER AND TELEPHONE JOUR: Patrik Albin 0317723512

AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).
GRADES: 8, 12 and 16 points for grades 3, 4 and 5, respectively.
MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Task 1. Let Y_1 , Y_2 , Y_3 and Y_4 be independent standard normal random variables (with zero expectation and unit variance) and put $X_1 = (Y_1 + Y_2)/\sqrt{2}$, $X_2 = (Y_1 + Y_2 + Y_3 + Y_4)/2$ and $X_3 = (Y_1 - Y_2)/\sqrt{2}$. State with reason if the following is true:

(a) X_1, X_2 and X_3 are all standard normal random variables. (1,25 points)

(b) X_i , i = 1, 2, 3, is a Gaussian random process. (1,25 points)

(c) X_1 and X_2 are independent random variables. (1,25 points)

(d) X_1 and X_3 are independent random variables. (1,25 points)

Task 2. Let $\{X_k\}_{k=0}^{\infty}$ be a (time homogeneous) Markov chain. Is it true that $\mathbf{P}\{X_k = i_k | X_{k+1} = i_{k+1}, \dots, X_{k+n} = i_{k+n}\} = \mathbf{P}\{X_k = i_k | X_{k+1} = i_{k+1}\}$ for $n \ge 1$? (5 points)

Task 3. Let $\{X_i\}_{i=1}^{\infty}$ be random variables and $F_n = \sigma(X_1, \ldots, X_n)$. Under what conditions is $M_n = \sum_{i=1}^n X_i$ a martingale with respect to F_n ? (5 points)

Task 4. Let T_1 and T_2 be the times for the first and second jump of a Poisson process with rate $\lambda > 0$. Find the joint probability density function of T_1 and T_2 . HINT: $\mathbf{P}\{T_1 \le s, T_2 \le t\} = \mathbf{P}\{X(s) \ge 1, X(t) \ge 2\}.$ (5 points)

MVE172 Solutions to written exam 4 December 2021

Task 1. (a) As all X_i 's are linear combination of independent normal random variables they are normal distributed. Calculations of means and variances give zero and one.

(b) All linear combination of the X_i 's are linear combination of the independent normal distributed Y_i 's and therefore are normal distributed. Hence X_i , i = 1, 2, 3, is Gaussian.

(c) X_1 and X_2 are not independent because $\mathbf{Cov}\{X_1, X_2\} = 1/\sqrt{2} \neq 0$.

(d) X_1 and X_3 are independent because they are jointly normal with $\mathbf{Cov}\{X_1, X_3\} = 0$.

 $\begin{aligned} \mathbf{Task 2. } \mathbf{P}\{X_k = i_k | X_{k+1} = i_{k+1}, \dots, X_{k+n} = i_{k+n}\} &= \frac{\mathbf{P}\{X_k = i_k\} p_{i_k, i_{k+1}} p_{i_{k+1}, i_{k+2}} \dots p_{i_{k+n-1}, i_{k+n}}}{\mathbf{P}\{X_{k+1} = i_{k+1}\} p_{i_{k+1}, i_{k+2}} \dots p_{i_{k+n-1}, i_{k+n}}} \\ &= \frac{\mathbf{P}\{X_k = i_k\} p_{i_k, i_{k+1}}}{\mathbf{P}\{X_{k+1} = i_{k+1}\}} = \mathbf{P}\{X_k = i_k | X_{k+1} = i_{k+1}\} \text{ so yes.} \end{aligned}$

Task 3. $E\{|X_n|\} < \infty$ and $E\{X_{n+1}|F_n\} = 0$ for all *n*.

Task 4. $f_{T_1,T_2}(s,t) = \frac{\partial^2}{\partial s \partial t} \mathbf{P}\{X(s) \ge 1, X(t) \ge 2\} = \frac{\partial^2}{\partial s \partial t} \mathbf{P}\{X(s) = 1\} \mathbf{P}\{X(t-s) \ge 1\} + \frac{\partial^2}{\partial s \partial t} \mathbf{P}\{X(s) \ge 2\} = \ldots = \lambda^2 e^{-\lambda t} \text{ for } 0 \le s \le t.$