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CHALMERS
The EM-algorithm

e We have earlier seen how the introduction of auxiliary variables
can simplify estimation in several cases:

e Censored and truncated data
e Binary regression models
e Latent variabel models such as normal-variance mixtures

e We used data augmentation to derive MCMC estimators for
these problem.

e If we are only interested in finding MAP /ML parameter
estimates, another alternative is the EM-algorithm

e The main reference is Dempster, Laird & Rubin (1977).

e “proposed many times in special circumstances’.
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CHALMERS
The EM-algorithm

Basic setup:
e We have observed some data y.
e Additional data z is “missing’.
e The estimation problem would be “easy” if z was known.

In principle we could write out the posterior given only the observed
data as

w(6]y) = / 7(6ly, 2)m(2ly) dz.

However the integral over the unknown data is often hard to
compute.

The EM-algorithm provides a method for finding the MAP estimate
of the parameters
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CHALMERS
The EM-algorithm

® Choose some initial guess of the parameters, gy ess.

® Write down the log-posterior assuming that all the data is
known, log w(0|y, z).

® Compute the expected value of the log-posterior over the
auxiliary variables, Q(, 0guess) = E(log m(0|y, 2)|y, Oguess)-

O @ can now be seen as the average possible value of the
log-posterior given known observations and guessed
parameters.

@ Update our guess of the parameters by maximasing
Q(G, eguess)-
® Repeat from 3.

The result is the Expectation-Maximization algorithm.
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The EM algorithm

Choose a starting value 0(?) and repeat for i = 1,2, ... until
convergence.
E-step Compute the expectation of the log-posterior with
respect to the unknown data

Q(6,67) = E (log m(6ly, 2)ly, 09~V .

M-step Compute () = arg max Q(9, (1),
0

Remarks:
e Under weak smoothness conditions, the algorithm will
converge to a local maxima of the posterior.
e We have presented the algorithm in the Bayesian setting, in
the original frequentist setting, the log-posterior is replaced
with the log-likelihood.
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Example — How to optimize your dart strategy

e Darts is enjoyed both as a pub game and as a professional
competitive activity.

e Most players aim for the highest scoring region of the board,
regardless of their level of skill.

o Recently Tibshirani, Price, and Taylor (2010) investigated
whether this is the optimal strategy
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Darts: Setup

o Let the center of the board correspond to the origin

e Let i be the location where we aim and let Z denote the
location where the dart actually hits the board

o A simple model is that Z ~ N(u, 02I) where o2 represents our
accuracy.

e Let s(Z) denote the score we get from Z.

e The goal is now to choose where we aim () in order to
maximize

E6(2)) = [ (@) g v (312 - nl? ) 2

e If we know o2, we can calculate the expected score as a

function of  (e.g. using Fourier transforms)
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Expected score for 0 = 5 mm
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Expected score for 0 = 30 mm
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Darts: Estimation

e Where we should aim depends on how accurate we are!

e We need to estimate our own accuracy o2 in order to find the
optimal strategy

e Throw n darts, aiming at bullseye (1 = 0)

e Estimating o2 is trivial if we record the positions of the darts:

n

1
2 2 2
OMLE = 5 E (Zi.+Zi,)
i1

e But this is not realistic to do at the pub!

e Instead, we just record the score and use the EM algorithm to
estimate o2.
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Darts: The algorithm

Let X = s(Z) denote the score.

We have
Q(o,0") = —nlog(o ;i (Z3o+ 73,1 X5,0)
Calculating gQQ = 0 gives
(o2)(+1) = Z E(Z2, + 72 ,|X;,00)

Thus, in order to estimate o2 we iterate:
® Calculate E(Z2 + Z2 ]Xj,a(i)) forj=1,...,n
® Set (o)) = L5 E(Z7, + Z7,|1X;,01)
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Calculating E(Z2 + Z2|X, 0?)

We can describe X as being achieved by landing in U;A;, where
each region A; can be expressed as [r;17;2] x [0;1,6;2] in polar
co-ordinates.

Thus,

E(Z2+ Z}1X,0%) = E(Z} + Z]|Z € UjA;j,0%)
Zj J fAj(xZ + 92)67(w2+y2)/202d$dy
XSy e dady
S [ [yr2 ede /20" agdr

i1 2051
ri2 (952 . —r2/252
Zj frj’l fej,l re="/20° ddr

312y +202)e 02— (12, 4 20%)e T2/

2 2
Zj e_rj,l/ZUZ _ €_rj’2/202
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Darts: Results
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iteration

e Results based on 100 measurements
12,16,19,3,17,1,25,19, 17, 50, 18, . ..

e Implementation available in the R package darts
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Resulting heat map
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Gaussian mixture models

A classical application of the EM algorithm.

e Assume that we have observations from one of several
Gaussian distributions, called classes.

The prior probability of data coming from class k is wy,.

The distribution of each class is [y|from class k] ~ N(pux, Xx).

This generates a Gaussian mixture model with density

K

r(ylw, 1, 5) = 3 wer(ylfrom class k, ., Si).
k=1

Possible usages

e Modeling heavy tailed distributions.
o Classification/clustering of data.
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(Gaussian) Mixture Models (cont.)

e If we knew the class belonging, z;, of each observation y; the
problem would be trivial.
e Thus the problem consists of two parts:
@ Determine the class belongings z.
@ Estimating the parameters 6 = {w, u, X}.

e Assuming flat priors for the parameters, we get

logﬂ-(e‘ya Z) = IOg H wziﬂ(yj’2j7/1’k7 Ek)
j=1
n K
=3 ) 1z = k) log (wem(y;lz; = k, pu, Si)) -
=1 k=1
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(Gaussian) Mixture Models — E-step

Taking the conditional expectation, we get

Q(6,0%) = E. (log w(0]y, =), 0

n K
=303 wutos (wentusles = b))

7=1 k=1
where ' '
wje = E(L(z = B)ly,609) = P(z; = Ky, 0

is the posterior probability for observation j belonging to class k:
7z = kyloD) _ wlyle; = k,09) n(z; = k|oD)

m(yl6®) > ez = k,ylo®)
o wlylz =k, 09) wy

Srm(ylz; =k, 00) wy
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Gaussian Mixture Models — M-step

Having calculated the expectation of the log-likelihood we have that

Q(6,0") = E(log 7(6ly, 2)ly, 0

n K
=) wi <10g(w1c) + log(ﬂ(yjl% = k,uk,Ek)>)

=1 k=1
K

- 1 d
= Z ijk <log(wk) —5 log det X, — B log(2m)—
j=1 k=1

(y; — b)) "5 (s — M))
; .
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Gaussian Mixture Models — M-step

The new estimates of {m, u, ¥} are obtained by maximizing the
Q-function.

Differentiating the function and setting the derivatives equal to
zero yields:

n
(i+1) 1
Z ZP z]—k:|y], :Eijk
j=1
1 _ .
- nwp, Z:wjkyz

H—l L L
nwk Z wjk (yj ,uk)
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Example — Old Faithful
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Data
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Eruptions

e Time before eruption and duration of eruption.

e A mixture model with two classes seems reasonable
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Results
library(mixtools)

data(faithful)
res = mvnormalmixEM(faithful)

e Estimated probabilities: w; = 0.356, wy = 0.644.

e Estimated parameters for first class:
_ (204 _ (00692 0.4352
F1=\5448) “17 \04352 33.6973
e Estimated parameters for second class:
_ (429 o _ (0170 0941
F2=\79.97) 27 \0.941 36.046
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Gaussian Mixture Models — Old Faithful

Posterior probability for first class:
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The Monte Carlo EM algorithm

In some applications, the E-step is complex and does not admit a
closed form solution. It is then natural to approximate it using
Monte Carlo methods.

The MCEM algorithm

Choose a starting value 8(®) and repeat for i = 1,2, ... until
convergence.

MC E-step Draw z(1, ..., 2() from 7r(z|y,0(i)), and let

Q(0,601) Z log 7 (6ly, 2™)
m=1
M-step Update the parameter estimate

0 = arg max Q(8, H(i_l)).
0
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The Expectation Conditional Maximization algorithm

When we have several unknown parameters 8 = (61,...,6,), the
M-step may not admit a closed form solution. In this case, one can
replace it with p conditional maximization steps

The ECM algorithm

Choose a starting value 8(°) and repeat for i = 1,2, ... until
convergence.

E-step Q(6,6071) = E. (logm(Bly, )|y, 6¢7).
CM-step For j =1,...,p, compute

Hj(i) = argmax Q (0" (= 1) 0(Z 1))
)

where 9(2 = (egz), “e. ’95 )17910](J21a 0oo 701(’1))
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