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The EM-algorithm

• We have earlier seen how the introduction of auxiliary variables
can simplify estimation in several cases:

• Censored and truncated data
• Binary regression models
• Latent variabel models such as normal-variance mixtures

• We used data augmentation to derive MCMC estimators for
these problem.

• If we are only interested in finding MAP/ML parameter
estimates, another alternative is the EM-algorithm

• The main reference is Dempster, Laird & Rubin (1977).
• “proposed many times in special circumstances”.
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The EM-algorithm

Basic setup:
• We have observed some data y.
• Additional data z is “missing”.
• The estimation problem would be “easy” if z was known.

In principle we could write out the posterior given only the observed
data as

π(θ|y) =

∫
π(θ|y, z)π(z|y) dz.

However the integral over the unknown data is often hard to
compute.

The EM-algorithm provides a method for finding the MAP estimate
of the parameters
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The EM-algorithm

1 Choose some initial guess of the parameters, θguess.
2 Write down the log-posterior assuming that all the data is

known, log π(θ|y, z).
3 Compute the expected value of the log-posterior over the

auxiliary variables, Q(θ, θguess) = E(log π(θ|y, z)|y, θguess).
4 Q can now be seen as the average possible value of the

log-posterior given known observations and guessed
parameters.

5 Update our guess of the parameters by maximasing
Q(θ, θguess).

6 Repeat from 3.

The result is the Expectation-Maximization algorithm.
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The EM algorithm

Choose a starting value θ(0) and repeat for i = 1, 2, . . . until
convergence.

E-step Compute the expectation of the log-posterior with
respect to the unknown data

Q(θ, θ(i−1)) = E
(

log π(θ|y, z)|y, θ(i−1)
)
.

M-step Compute θ(i) = arg max
θ

Q(θ, θ(i−1)).

Remarks:
• Under weak smoothness conditions, the algorithm will
converge to a local maxima of the posterior.

• We have presented the algorithm in the Bayesian setting, in
the original frequentist setting, the log-posterior is replaced
with the log-likelihood.
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Example — How to optimize your dart strategy

• Darts is enjoyed both as a pub game and as a professional
competitive activity.

• Most players aim for the highest scoring region of the board,
regardless of their level of skill.

• Recently Tibshirani, Price, and Taylor (2010) investigated
whether this is the optimal strategy

Examples — Darts David Bolin



Darts: Setup

• Let the center of the board correspond to the origin
• Let µ be the location where we aim and let Z denote the
location where the dart actually hits the board

• A simple model is that Z ∼ N(µ, σ2I) where σ2 represents our
accuracy.

• Let s(Z) denote the score we get from Z.
• The goal is now to choose where we aim (µ) in order to
maximize

E(s(Z)) =

∫
s(Z)

1

2πσ2
exp

(
−1

2
‖Z − µ‖2

)
dZ

• If we know σ2, we can calculate the expected score as a
function of µ (e.g. using Fourier transforms)
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Expected score for σ = 5 mm

20
1

18

4

13

6

10

15

2

17
3

19

7

16

8

11

14

9

12

5

●

0

10

20

30

40

Examples — Darts David Bolin



Expected score for σ = 30 mm
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Expected score for σ = 60 mm
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Darts: Estimation

• Where we should aim depends on how accurate we are!
• We need to estimate our own accuracy σ2 in order to find the
optimal strategy

• Throw n darts, aiming at bullseye (µ = 0)
• Estimating σ2 is trivial if we record the positions of the darts:

σ2MLE =
1

2n

n∑
i=1

(Z2
i,x + Z2

i,y)

• But this is not realistic to do at the pub!
• Instead, we just record the score and use the EM algorithm to
estimate σ2.
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Darts: The algorithm

Let X = s(Z) denote the score.
We have

Q(σ, σ(i)) = −n log(σ2) +
1

2σ2

n∑
j=1

E(Z2
j,x + Z2

j,y|Xj , σ
(i))

Calculating ∂ Q
∂ σ2 = 0 gives

(σ2)(i+1) =
1

2n

n∑
j=1

E(Z2
j,x + Z2

j,y|Xj , σ
(i))

Thus, in order to estimate σ2 we iterate:
1 Calculate E(Z2

j,x + Z2
j,y|Xj , σ

(i)) for j = 1, . . . , n.

2 Set (σ2)(i+1) = 1
2n

∑n
j=1 E(Z2

j,x + Z2
j,y|Xj , σ

(i))
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Calculating E(Z2
x + Z2

y |X, σ2)

We can describe X as being achieved by landing in ∪jAj , where
each region Aj can be expressed as [rj,1rj,2]× [θj,1, θj,2] in polar
co-ordinates.
Thus,

E(Z2
x + Z2

y |X,σ2) = E(Z2
x + Z2

y |Z ∈ ∪jAj , σ2)

=

∑
j

∫ ∫
Aj

(x2 + y2)e−(x
2+y2)/2σ2

dxdy∑
j

∫ ∫
Aj
e−(x2+y2)/2σ2dxdy

=

∑
j

∫ rj,2
rj,1

∫ θj,2
θj,1

r3e−r
2/2σ2

dθdr∑
j

∫ rj,2
rj,1

∫ θj,2
θj,1

re−r2/2σ2dθdr

=

∑
j(r

2
j,1 + 2σ2)e−r

2
j,1/2σ

2

− (r2j,2 + 2σ2)e−r
2
j,2/2σ

2∑
j e
−r2j,1/2σ2 − e−r

2
j,2/2σ

2
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Darts: Results
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• Results based on 100 measurements

12, 16, 19, 3, 17, 1, 25, 19, 17, 50, 18, . . .

• Implementation available in the R package darts
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Resulting heat map
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Gaussian mixture models

A classical application of the EM algorithm.
• Assume that we have observations from one of several
Gaussian distributions, called classes.

• The prior probability of data coming from class k is wk.
• The distribution of each class is [y|from class k] ∼ N(µk,Σk).
• This generates a Gaussian mixture model with density

π(y|w, µ,Σ) =
K∑
k=1

wkπ(y|from class k, µk,Σk).

• Possible usages
• Modeling heavy tailed distributions.
• Classification/clustering of data.
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(Gaussian) Mixture Models (cont.)

• If we knew the class belonging, zj , of each observation yi the
problem would be trivial.

• Thus the problem consists of two parts:
1 Determine the class belongings z.
2 Estimating the parameters θ = {w, µ,Σ}.

• Assuming flat priors for the parameters, we get

log π(θ|y, z) = log

n∏
j=1

wziπ(yj |zj , µk,Σk)

=

n∑
j=1

K∑
k=1

1(zj = k) log (wkπ(yj |zj = k, µk,Σk)) .
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(Gaussian) Mixture Models — E-step

Taking the conditional expectation, we get

Q(θ, θ(i)) = Ez
(

log π(θ|y, z)|y, θ(i)
)

=

n∑
j=1

K∑
k=1

wjk log

(
wkπ(yj |zj = k, µk,Σk)

)
where

wjk = E(1(zj = k)|y, θ(i)) = P(zj = k|y, θ(i))

is the posterior probability for observation j belonging to class k:

wjk =
π(zj = k, y|θ(i))

π(y|θ(i))
=
π(y|zj = k, θ(i))π(zj = k|θ(i))∑

k π(zj = k, y|θ(i))

=
π(y|zj = k, θ(i))wk∑
k π(y|zj = k, θ(i))wk

Examples — GMM David Bolin



Gaussian Mixture Models — M-step

Having calculated the expectation of the log-likelihood we have that

Q(θ, θ(i)) = E
(

log π(θ|y, z)|y, θ(i)
)

=

n∑
j=1

K∑
k=1

wik

(
log(wk) + log

(
π(yj |zj = k, µk,Σk)

))

=
n∑
j=1

K∑
k=1

wjk

(
log(wk)−

1

2
log det Σk −

d

2
log(2π)−

(yj − µk)>Σ−1k (yj − µk)
2

)
.
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Gaussian Mixture Models — M-step

The new estimates of {π, µ,Σ} are obtained by maximizing the
Q-function.

Differentiating the function and setting the derivatives equal to
zero yields:

w
(i+1)
k =

1

n

n∑
j=1

P(zj = k|yj , θ(i)) =
1

n

n∑
j=1

wjk

µ
(i+1)
k =

1

nwk

n∑
j=1

wjkyi

Σ
(i+1)
k =

1

nwk

n∑
j=1

wjk(yj − µk)>(yj − µk).
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Example — Old Faithful
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Data
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• Time before eruption and duration of eruption.
• A mixture model with two classes seems reasonable
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Results

library(mixtools)
data(faithful)
res = mvnormalmixEM(faithful)

• Estimated probabilities: w1 = 0.356, w2 = 0.644.
• Estimated parameters for first class:

µ1 =

(
2.04
54.48

)
, Σ1 =

(
0.0692 0.4352
0.4352 33.6973

)
• Estimated parameters for second class:

µ2 =

(
4.29
79.97

)
, Σ2 =

(
0.170 0.941
0.941 36.046

)
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Gaussian Mixture Models — Old Faithful

Posterior probability for first class:
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The Monte Carlo EM algorithm

In some applications, the E-step is complex and does not admit a
closed form solution. It is then natural to approximate it using
Monte Carlo methods.

The MCEM algorithm

Choose a starting value θ(0) and repeat for i = 1, 2, . . . until
convergence.
MC E-step Draw z(1), . . . , z(M) from π(z|y, θ(i)), and let

Q(θ, θ(i−1)) =
1

M

M∑
m=1

log π(θ|y, z(m))

M-step Update the parameter estimate

θ(i) = arg max
θ

Q(θ, θ(i−1)).
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The Expectation Conditional Maximization algorithm

When we have several unknown parameters θ = (θ1, . . . , θp), the
M-step may not admit a closed form solution. In this case, one can
replace it with p conditional maximization steps

The ECM algorithm

Choose a starting value θ(0) and repeat for i = 1, 2, . . . until
convergence.

E-step Q(θ,θ(i−1)) = Ez
(

log π(θ|y, z)|y,θ(i−1)
)
.

CM-step For j = 1, . . . , p, compute

θ
(i)
j = arg max

θ
Q(θ

(i−1)
−j ,θ(i−1)).

where θ
(i)
−j = (θ

(i)
1 , . . . , θ

(i)
j−1, θ, θ

(i)
j+1, . . . , θ

(i)
p )
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