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which means that the posterior is a Beta distribution with parameters r + @ and y + 3.

(b) We get, for example,
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(c) The number of unsuccessful trials until 10 successful trials is obtained is Negative
Binomially distributed with parameters p and r = 10, and Karl has observed y =
36—10 = 26 in such an experiment. The prior mentioned corresponds to an improper
Beta distribution with @ = 0 and § = 0. Thus we can get the result from part (a): The
posterior is a Beta distribution with parameters 10 and 26. The expectation of such a
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Beta distribution is i3 = 36 = 0.278.

(d) Karl can now use the posterior from (c) as his prior. The number of unsuccessful
experiments y* necessary to get n successful ones is then given by the distribution
found in (b), with@ = 10,8 =26, r =nandy = y*:

_ I(@36) I'A0+n) I'(y*+26) I'(n+y)

- T(10)(26) I['(n) Q7 I'(n+y* +36)

n(y")

2. (a) Using the Holm method we get adjusted p-values

Hp : max(0.071-1,0.128) = 0.128
Hp @ 0.002-4 =0.008
Hpz: 0.064-2=0.128
Hypy : 0.027 -3 =0.081.

This shows that we can reject Hy, and Hy,, while still guaranteeing a FWER<10%.

(b) An alternative is now to use Sidak adjusted p-values, which would become

Hy: 1-(1-0.071)* =0.255
Hy: 1-(1-0.002)* =0.008
Hy: 1-(1-0.064)"=0.232
Hy: 1-(1-0.027)* =0.104.



Using this method, we can only reject Hy,. However, as the assumptions in (a) are
actually weaker, we can still reject both Hy, and Hy, guaranteeing a FWER<10%.

(a) We get
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Setting d% log f(x) = 0 gives x = 0, and as this is clearly a maximum, the mode is at

x = 0. Computing the second derivative, keeping in mind that we only need to know
its value when x = 0, we get
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for some continuous function g(x), showing that the value of the second derivative at
x=0is-8.

The normal distribution with expectation 0 and with the second derivative at O of the
logarithm of its density equal to -8 is the one with density

h(x) oc exp (—gxz)

so that the approximative normal probaiblity is the one with expectation 0 and preci-
sion 8, i.e., variance g = 0.125.

(b) We get
f(@0) = h(0) = wlzﬂexp( > 0 ) = N

As f(0) = C, this gives us C =~
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(a) We have
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so that the posterior is a Gamma distribution with parameters @ + 1 and 8 + y;.
(b) We have
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so that we can write
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we can simulate from this distribution by first simulating from n(a,8 | y1,..., V)
and then simulating from each n(4; | y;, @, ), using (a). To simulate from n(a, S |
Y1, ---,Yn) We use the results from (c). One of several possible methods is the follow-
ing: First, transform from the variables (o, 8) to new variables (a, b), setting @ = €
and B = e’; this gives us a probability distribution defined on all of R?, where the
logaritm of its density is given, up to a constant, by
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Numerical optimization of this function can give you a bivariate normal distribution
approximating it. This can again be used to find parameters for an MCMC simula-
tion method, or possibly a rejection sampling algorithm. A brute-force simulation
algorithm could also be employed, using computed values of the function above on a
grid.
If the toys that lasted longest and shortest were numbered i and j, respectively, then
one could count the number of rows in A where /ll, > % and divide by the total number
of rows in A; this would give an approximation to the probability in question.

A possible simulation method would be Gibbs sampling: Alternatively simulating
from 7(6, | 6,) and 7(0, | 6;).

When 6, is fixed, the function is an exponential of a second-degree polynomial in 6;.
Completing the square, we get
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which means that (6, | 6,) is a Normal distribution with expectation
sion 26,.

and preci-

(¢) We can write
(6 | 61) o exp(—676, + 6 1og 6;) o 6 exp(—6365),

which shows that (6, | 6,) is a Gamma distribution with parameters 6; + 1 and 9%.



