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1. (a) The posterior is
π(λ | y) ∝ π(y | λ)π(λ) ∝λ λy exp(−tλ)π(λ)

For the 4 possible values of λ, we get

0.1 : 0.12 exp(−7 · 0.1) · 0.1 = 0.000497
0.2 : 0.22 exp(−7 · 0.2) · 0.3 = 0.002959
0.3 : 0.32 exp(−7 · 0.3) · 0.5 = 0.005511
0.4 : 0.42 exp(−7 · 0.4) · 0.1 = 0.000973

The sum of these values is 0.00994. Adjusting each value by dividing by the sum we
get the posterior
λ 0.1 0.2 0.3 0.4
Probability 0.05 0.30 0.55 0.10

(b) The prior predictive distribution at zero is

π(0) =
0.4
∑

λ=0.1
π(0 | λ)π(λ)

=

0.4
∑

λ=0.1
exp(−7λ)π(λ)

= exp(−7 · 0.1) · 0.1 + exp(−7 · 0.2) · 0.3
+ exp(−7 · 0.3) · 0.5 + exp(−7 · 0.4) · 0.1

= 0.19

2. (a) We get

π(µ | data) ∝ π(data | µ)
∝ Φ(165 | µ, 10)2 ·

[

Φ(175 | µ, 10) − Φ(165 | µ, 10)]5

·(1 − Φ(175 | µ, 10))3

(b) Several suggestions are acceptable. The simplest is to numerically compute the func-
tion above on a dense set of evenly spaced values in some reasonable interval, say 0 -
300, divide by the sum, and use the resulting discrete distribution as an approximation
for the posterior.

(c) As there are 5 lengths in the interval between 165 and 175, the posterior probability of
very largeσmust be small. Similarly, as there are both lengths below 165 and lengths
above 175, the posterior probability of very small σ must also be small. Regarding



µ, the data clearly would give small posterior probabilities to values far away from
the interval [165, 175]. Together, these observations would lead to a guess that the
posterior should be proper, as the answer to the first question.
To make such an argument more precise, one could for example observe that, for
fixed µ and large σ, the factors in the likelihood are of the order 1

2
2, 1
σ

5, and 1
2

3,
respectively, so that the posterior would be of the order σ−6. For small σ, one could
show that the posterior would approach 0 as σ approaches zero.
The intuitive answer to the last question is that the posterior is improper. The reason
is that the data in this form would not contain any information about the spread of
the actual lengths. In particular, the given data would not limit the possibility of very
large σ. More mathematically, for fixed µ, the likelihood will approach a positive
constant when σ grows large. Thus the posterior would behave like 1/σ for such
large σ, and the posterior would be improper.

3. (a) We get that

π(pA, pB | data) ∝pA,pB π(data | pA, pB)
∝pA,pB p22

A (1 − pA)78 p12
B (1 − pB)88

∝pA,pB

Γ(102)
Γ(23)Γ(79) p22

A (1 − pA)78 Γ(102)
Γ(13)Γ(89) p12

B (1 − pB)88.

Thus the posterior is proportional to the product of two Beta distributions, with

pA | data ∼ Gamma(23, 79)
pB | data ∼ Gamma(13, 89).

As the product of these distributions clearly integrate to 1, we see that the posterior
is in fact equal to the product, and not just proportional to it.

(b) Simulate 10000 values from the Beta(23, 79) distribution, and put them in a vector
PA. Independently, simulate 10000 values from the Beta(13, 89) distribution, and
put them in a vector PB. Compute the 10000 quotients PB/PA, and use the sample
2.5% and 97.5% quantiles of this set of numbers as the boundaries of the credibility
interval. In R,

> PA <- rbeta(10000, 23, 79)

> PB <- rbeta(10000, 13, 89)

> quantile(PB/PA, c(0.025, 0.975))

2.5% 97.5%

0.2914252 1.0266977

(c) Similar as above, except that now we find the empirical proportion when PA > PB.
In R,

> sum(PA>PB)/10000

[1] 0.9688

4. The code computes the approximate expected value of func(X), where X is a random vari-
able with a distributioni given by the posterior function. The algorithm implemented is
called Importance Sampling.



5. The purpose of the Metropolis-Hastings algorithm is to simulate from a distribution for
a parameter θ based on f (θ), a function proportional to the density function. The algo-
rithm produces a chain of values θ1, . . . , θt, . . . with stationary distribution equal to the
distribution in question. The main ingredient is a proposal function J(θ∗ | θt) providing a
probability distribution for θ∗ given the value of θt at each step. The new value θt+1 is set
equal to θ∗ with probability

r = min
(

1, f (θ∗)J(θt | θ∗)
f (θt)J(θ∗ | θt)

)

or otherwise set equal to θt. (More can be written, but such a short explanation is enough
here).

6. (a) The prior can be re-written as a normal distribution:

f (θ) = exp(−2θ2 + θ − 3)

∝θ exp
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−2(θ − 1
4)2

)
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Thus the prior is normal with expectation 1
4 and variance 1

4 . The two observations
y1 = 1 and y2 = 4 are normally distributed with expectation θ and variance 1. Using
standard formulas, we then get that

θ | y1 ∼ N
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θ | y1, y2 ∼ N
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Alternatively, and faster, one can observe that the likelihood of the data is the same
as for a single observation of 5

2 with a normal distribution with expectation θ and
variance 1

2 . Then we get directly

θ | y1, y2 ∼ N
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(b) As the prior for θ is a normal distributionN( 1
4 ,

1
4 ), and observations y have a normal

distribution with expectation θ and variance 1, we know that y has a normal distribu-
tion, and the expectation and variance of its distribution can be found as

E(y) = E(E(y | θ)) = E(θ) = 1
4

Var(y) = Var(E(y | θ)) + E(Var(y | θ)) = Var(θ) + E(1) = 1
4 + 1 = 5

4 .

So the prior predictive distribution isN( 1
4 ,

5
4 ).



7. (a) First of all, as Mary-Ann is doing a permutation test, she should do sampling without
replacement, meaning that the first and fourth suggested code are incorrect. Secondly,
her null-hypothesis is that Y is independent of X given the value of F. Thus, when
doing the permutation, Mary-Ann should only permute within groups that have the
same value for F. Thus the third suggested code is the correct one.

(b) The p-value.

8. (a) We see that the conditional prior of β given a fixed α is a Gamma distribution:

π(β | α) ∝β π(α, β)
∝β β

2 exp(−α2β)

∝β
(α2)3

Γ(3) β
2 exp(−α2β).

So
β | α ∼ Gamma(3, α2).

In general, the Gamma distribution is a conjugate distribution to the Gamma likeli-
hood when α is fixed: Assume that β | α ∼ Gamma(α0, β0). Then

π(β | y, α) ∝β π(y | β, α)π(β | α)
∝β β

α exp(−βy)βα0−1 exp(−β0β)
∝β β

α+α0−1 exp(−(y + β0)β).

Thus in this case
β | y, α ∼ Gamma(α0 + α, β0 + y),

and the prior is semi-conjugate. In our particular case, α0 = 3 and β0 = α
2, so

β | y, α ∼ Gamma(α + 3, α2
+ y).

(b) Taking advantage of the semi-conjugacy, we get

π(y | α) = π(y | β, α)π(β | α)
π(β | y, α)

=

βα

Γ(α)y
α−1 exp(−βy) (α2)3

Γ(3) β
α exp(−α2β)

(α2+y)α+3

Γ(α+3) β
α+2 exp(−(α2 + y)β)

=
Γ(α + 3)
Γ(3)Γ(α)

α6 yα−1

(α2 + y)α+3 .

For the marginal prior for α, we get

π(α) =
π(α, β)
π(β | α)

∝α
β2 exp(−α2β)

(α2)3

Γ(3) β
2 exp(−α2β)

∝α α
−6.



Thus the marginal posterior for α becomes

π(α | y) ∝α π(y | α)π(α)

∝α
Γ(α + 3)
Γ(α) α

6 yα−1

(α2 + y)α+3α
−6

∝α
Γ(α + 3)
Γ(α)

yα−1

(α2 + y)α+3 .

For those who like to integrate, one may instead compute

π(α | y) =

∫ ∞

0
π(α, β | y) dβ

∝α

∫ ∞

0
π(y | α, β)π(α, β) dβ

∝α

∫ ∞

0

βα

Γ(α)yα−1 exp(−βy)β2 exp(−α2β) dβ

∝α
yα−1

Γ(α)

∫ ∞

0
βα+2 exp(−(y + α2)β) dβ

∝α
yα−1

Γ(α)
Γ(α + 3)

(y + α2)α+3


