Petter Mostad Applied Mathematics and Statistics Chalmers and GU

MSA100 / MVE186 Computer Intensive Statistical Methods

Exam 22 October 2016, 14:00 - 18:00 Examiner: Petter Mostad, phone 031-772-3579 visits the exam at 15:00 annd 17:00 Allowed aids: None.

The appendix of this exam contains information about probability distributions. Total number of points: 30. To pass, at least 12 points are needed

1. (4 points) Assume $x \mid \theta \sim \text{Uniform}[0, \theta]$, so that we have the density

$$\pi(x \mid \theta) = \frac{1}{\theta} I[0 \le x \le \theta]$$

(a) Assume θ has a Pareto(1, 1) distribution, i.e., the density is

$$\pi(\theta) = \frac{1}{\theta^2} I[1 \le \theta]$$

find the posterior distribution $\pi(\theta \mid x)$.

- (b) Prove that the Pareto family is a conjugate family to the distribution of $x \mid \theta$.
- (c) Find the prior predictive distribution for x when θ has the prior indicated in (a).
- 2. (4 points) In each of the following cases, assume that you want to generate a sample of size one billion from the distribution in an efficient way. Write down an algorithm where generation of random numbers is done only from the Uniform[0, 1] distribution.
 - (a) A Cauchy(3, 1) distribution.
 - (b) A Poisson(2.9) distribution.
 - (c) An Exponential(3) distribution conditional on values being above 10.
- 3. (8 points) We assume that, for i = 1, ..., n, counts c_i have been generated from Poisson distributions with intensities λ_i . We also assume that the λ_i are independently drawn from a Gamma(α, β) distribution, where $\alpha > 0$ and $\beta > 0$, and that we use flat priors on α and β , so that $\pi(\alpha) \propto 1$ and $\pi(\beta) \propto 1$. Finally, we assume that for each *i*, instead of the counts c_i we have only observed censored counts y_i with possible values 0, 1, 2, and "many". In other words, if the count is less than 3, y_i gives the count, otherwise it is equal to "many".
 - (a) Write down a function proportional to the joint posterior density for all the variables above.

- (b) For each of the variables above, write down a function proportional to its conditional density given all the other variables, and, when possible, identify the name and parameters of this conditional distribution.
- (c) For each of the variables above where the conditional distribution is not equal to a standard named probability distribution, describe how you would perform the conditional simulation of that variable in an implementation of Gibbs sampling for this problem.
- (d) Assume that, given the data y_1, \ldots, y_n , you want to find the maximum likelihood estimates for the parameters α and β . Outline how the EM algorithm could be used make such an estimate (I do not expect you to produce all details, as this may take you too much time).
- 4. (4 points)
 - (a) Write down, using precise notation, the Metropolis Hastings algorithm.
 - (b) Define what it means that a Markov chain satisfies the detailed balance condition relative to a density f.
 - (c) Prove if a Markov chain satisfies the detailed balance condition relative to a density f then f is a stationary distribution for the Markov chain.
 - (d) Prove that the Markov chain defined by the Metropolis Hastings algorithm satisfies the global balance condition relative to the target density.
- 5. (4 points) Assume x > 0 has the probability distribution specified by

$$\pi(x) \propto \exp(-x^{2.3}) \cdot \exp(-x^{1.3}) \cdot \frac{1}{1+x^3}$$

Our goal is to simulate from this distribution.

- (a) Consider the ideas of slice sampling. Define the three extra variables y_1 , y_2 , and y_3 suggested by slice sampling in this case, and write down a function proportional to the joint distribution on x, y_1 , y_2 , y_3 .
- (b) Write down the details of the slice sampler algorithm in this case.
- 6. (4 points) Assume a variable x with 0 < x < 1 has density

$$\pi(x) = C \left(\sin(14x) + \cos(19x) \right)^2$$

Our goal is to simulate from this distribution.

- (a) Suggest a specific function to use in a rejection sampling algorithm for this problem.
- (b) Describe the rejection sampling algorithm in this case.
- (c) Extend the algorithm so that it also produces an estimate for the number C.

7. (2 points) Below is a trace plot from a Metropolis Hastings simulation using independent proposals. Do you think the output indicates problems with the simulation, and if so, why? Do you have a general suggestion for how the proposal function should be changed?

Appendix: Some probability distributions

The Beta distribution

 $x \ge 0$ has a Beta distribution with parameters $\alpha > 0$ and $\beta > 0$ if it has density

$$\pi(x \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

The Cauchy distribution

If x has a Cauchy(μ , γ) distribution ($\gamma > 0$), then the probability density is

$$\pi(x \mid \mu, \gamma) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - \mu}{\gamma}\right)^2\right]}$$

and the cumulative distribution is

$$F(x) = \frac{1}{\pi} \arctan\left(\frac{x-\mu}{\gamma}\right) + \frac{1}{2}$$

The Exponential distribution

If x > 0 has an Exponential(λ) distribution, with $\lambda > 0$, the density is given by

$$\pi(x \mid \lambda) = \lambda \exp(-\lambda x)$$

and the cumulative density function is given by

$$F(x) = 1 - \exp(-\lambda x)$$

The Gamma distribution

If x has a Gamma(α, β) distribution, with $\alpha > 0$ and $\beta > 0$, then the density is

$$\pi(x \mid \alpha\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x)$$

The Negative Binomial distribution

Given a number r of failures and a probability p of success, the Negative Binomial specifies the number k of successes observed until r failures are observed. The probability mass function:

$$\pi(k \mid r, p) = \binom{k+r-1}{k} (1-p)^r p^k$$

The Pareto distribution

If θ has the Pareto distribution with parameters M and α ,

$$\theta \mid M, \alpha \sim \text{Pareto}(M, \alpha)$$

then the density is

$$\pi(\theta \mid M, \alpha) = \alpha M^{\alpha} \frac{1}{\theta^{\alpha+1}} I(M \le \theta)$$

and the cumulative distribution is

$$F(\theta) = \left(1 - \left(\frac{M}{\theta}\right)^{\alpha}\right) I[M \le \theta]$$

The Poisson distribution

If *k* has a Poisson(λ) distribution with intensity $\lambda > 0$, then the probabilities are given by

$$\pi(k \mid \lambda) = \exp(-\lambda)\frac{\lambda^k}{k!}$$