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The appendix of this exam contains informaion about probability distributions.

Total number of points: 30. To pass, at least 12 points are needed

1. (2 points) Consider the following situation: Data x1, . . . , xn is assumed to be a sample from
a normal distribution with expectation θ and variance 1. Consider also the following two
statements: "A 95% confidence interval for θ is the interval [2.3, 2.5]." and "A 95% credi-
bility interval for θ is the interval [2.3, 2.5]." Describe the context in which each statement
is used, and write down a correct and precise interpretation of the statement in that context.

2. (7 points) Assume x has a Negative Binomial distribution with fixed known r, and with
parameter p (see Appendix).

(a) Prove that the Beta family of probability distributions (see Appendix) is a conjugate
family for the p parameter.

(b) Compute the formula for the prior predictive distribution for x.

(c) Find the posterior predictive distribution for an additional observation xNEW , if the
prior for p is Beta(2, 1), the value of r is 2, and the observed value is x = 1.

(d) Assume there is a choice between two prior models for p: In model 1, p ∼ Beta(α1, β1)
and in model 2, p ∼ Beta(α2, β2). Compute the formula for the Bayes factor B which
can be used to make a choice between the models.

(e) Assume the prior for p is a weighted mean of the two Beta distributions with param-
eters (α1, β1) and (α2, β2), respectively. Assume they have equal weights in the prior.
Compute the posterior density for p given an observation x. You may express the
posterior in terms of the B computed in (d) above.

3. (4 points) Assume the only (pseudo) random numbers your computer tool can generate are
those that have a Uniform distribution on the interval [0, 1], but otherwise the tool has the
capabilities of, say, R. Describe in detail how you would simulate a random number from
the following distributions:

(a) An exponential distribution with parameter 2.7.

(b) An Inverse Gamma distribution with parameters 2.7 and 9.1.



(c) The distribution on x whose density on the whole real line is proportional to

f (x) =

7∑
i=1

wi exp
(
−

1
2

(x − ui)2
)

where w1,w2, . . . ,w7 are given positive numbers summing to 1 and u1, . . . , uk are
given real numbers.

4. (4 points) Answer each of the following questions in a couple of sentences:

(a) What is a Bayesian Network?

(b) What is a Markov Network?

(c) What is the difference between a causal network and a Bayesian Network with the
same structure?

(d) What is the connection between the precision matrix of a Gaussian Markov random
field and its Markov graph?

5. (2 points) What is Monte Carlo Integration? Explain briefly how you can obtain estimates
of the accuracy of the result from a Monte Carlo integration.

6. (5 points) Consider the following model:The data consists of k groups of counts, with s
counts in each group; we denote the data with ci j, where i = 1, . . . , k, j = 1, . . . , s, and
where each ci j is a nonnegative integer. We assume the counts ci1, ci2, . . . , cis represent
a sample from a Poisson distribution with parameter λi. We also assume λ1, λ2, . . . , λk

represent a sample from a Gamma distribution with parameters α and β. We use a flat
prior for α and a Gamma(5, 2) prior for β.

(a) Write down and simplify the log posterior density for the model1. In other words
write down a function of the parameters that (up to an additive constant) is equal to
the logarithm of the density of the parameters given the observed data c11, . . . , cks.

(b) Give a general description of Gibbs sampling. Include the general idea, and mention
how one can prove that it produces an (approximate) sample from the posterior of the
parameters given the data in the model above.

(c) Describe how you would implement Gibbs sampling for the model above. In partic-
ular, at each point where a number should be simulated and that simulation can be
done from a standard parametric distribution, identify that distribution.

7. (6 points) The figure below shows a plot of a probability density function from which you
would like to get a sample:

1In the original exam, one asks for the log-likelihood here
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(a) Suppose you would like to sample from the distribution above using rejection sam-
pling (e.g., the Accept-Reject method). Give a description of exactly how the algo-
rithm would work, including an explicit candidate density, with parameter values.
Base your proposal on looking at the figure above, and motivate your choices.

(b) Suppose you would like to sample from the distribution above using a Metropolis
Hastings algorithm with an independent proposal function. Give an example of a
proposal function that you would use, including its parametric form and reasonable
values for its parameter or parameters. Base your proposal on looking at the figure
above, and motivate your choice. Describe the differences, if any, between the type
of samples generated and those generated according to the method in (a).

(c) Suppose you would like to sample from the distribution using a Metropolis Hastings
algorithm with a symmetric proposal function (a random walk Metropolis Hastings).
Give an example of a proposal function that you would use, indlucing its parametric
form and a reasonable values for its parameter or parameters. Base your proposal on
looking at the figure above, and motivate your choice.



(d) Using the proposal function from (c), describe what would happen in the algorithm
if you rescale the proposal function to have a much smaller variance. Why would
this be a problem? Also, answer the same questions assuming you rescale to a much
larger variance.

Appendix: Some probability distributions

The Gamma distribution

If x > 0 has a Gamma(α, β) distribution, with α > 0 and β > 0, then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

The Inverse Gamma distribution

We say that x > 0 has an Inverse Gamma distribution with parameters α > 0 and β > 0,

x ∼ Inv-Gamma(α, β),

if the density is given by

π(x | α, β) =
βα

Γ(α)
x−α−1 exp

(
−
β

x

)
.

Note that if x ∼ Inv-Gamma(α, β) then 1/x ∼ Gamma(α, β).

The Poisson distribution

If k has a Poisson(λ) distribution with intensity λ > 0, then the probabilities are given by

π(k | λ) = exp(−λ)
λk

k!

The Normal distribution

We say that a real number x has a Normal distribution with parameters µ and σ2 > 0,

x ∼ Normal(µ, σ2)

if it has density

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.



The Beta distribution
We say that x ≥ 0 has a Beta distribution with parameters α > 0 and β > 0,

x ∼ Beta(α, β),

if it has density

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

The Exponential distribution
If x > 0 has an Exponential(λ) distribution, with λ > 0, the density is given by

π(x | λ) = λ exp(−λx)

and the cumulative density function is given by

F(x) = 1 − exp(−λx)

The Negative Binomial distribution
We say that x has a Negative Binomial distribution with parameters r and p, where x and r are
nonnegative integers and p > 0, writing

x ∼ Neg-Bin(r, p),

if it has probability mass function

π(x | r, p) =

(
x + r − 1

x

)
(1 − p)r pk.

If the parameter r represents a number of "failures" and p the probability of "success", x repre-
sents the number of successes observed until r failures are observed.


