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The appendix of this exam contains informaion about some probability distributions.
Total number of points: 30. To pass, at least 12 points are needed

1. (5 points) Assume x has a Geometric distribution with parameter p.

(a) If p has a prior that is uniform on [0, 1], find and name the posterior distribution for
p when x = 3.

(b) Make a guess for a family of distributions that is conjugate to the Geometric distri-
bution. Prove that this family is a conjugate family.

(c) Assume p has a prior that is uniform on [0, 1], and that the observation x = 3 has been
made. Before a new observation y from the Geometric distribution with parameter p
is made, one may compute π(y | x), its predictive distribution. Find a formula for this
probability mass function (not depending on p).

2. (2 points) It is possible to show that if X ∼ Gamma(α1, β) and Y ∼ Gamma(α2, β) are
independent, then X +Y ∼ Gamma(α1 +α2, β). Use this property to derive an algorithm for
simulating from a Gamma(α, β) distribution when α is an integer, using only simulation
from the uniform distribution on [0, 1] as a basis.

Figure 1: The hidden Markov model used in question 3.

3. (5 points) Consider the hidden Markov model depicted in Figure ??. We assume that all
variables are binary, with values 0 or 1, and that

Pr(xi = 1 | xi−1 = 1) = 0.4 for i = 1, . . . ,T
Pr(xi = 1 | xi−1 = 0) = 0.2 for i = 1, . . . ,T

Pr(yi = 1 | xi = 1) = 0.8 for i = 0, . . . ,T
Pr(yi = 1 | xi = 0) = 0.3 for i = 0, . . . ,T

Pr(x0 = 1) = 0.1



We assume data values for y0, y1, . . . , yT are given.

(a) Define, for i = 0, . . . ,T ,
ai = Pr(xi = 1 | y0, . . . , yi)

Compute a0 and a1 assuming that y0 = 1 and y1 = 0.

(b) Define, for i = 0, . . . ,T − 1,

bi = Pr(yi+1, . . . , yT | xi = 1)

Compute bT−1 assuming that yT = 1.

(c) Assume you have computed ai for i = 0, . . . ,T and bi for i = 0, . . . ,T − 1. Describe
how you can compute

Pr(xi = 1 | y0, . . . , yT )

for i = 0, . . . ,T − 1.

4. (7 points) Consider the following hierarchical model: We have n groups of observa-
tions, each with m observations; we denote the observations with xi j, i = 1, . . . , n, j =

1, . . . ,m. For each i, the observations xi1, . . . , xim are independently exponentially dis-
tributed with parameter λi. The parameters λ1, . . . , λn are Gamma(4, β) distributed. We use
a Gamma(3, 4) prior for β.

(a) Write down and simplify as much as you can the logarithm of the joint posterior
density for the model. You may disregard any additive constants not depending on
the parameters β and λ1, . . . , λn.

(b) Using the result from (a), describe in detail how you can use Gibbs sampling to ob-
tain an (approximate) sample from the joint posterior distribution for (β, λ1, . . . , λn).
Include which distributions you sample from in each step.

(c) Now, assume that the observations xi j are censored, in the sense that for any xi j that
is greater than 10, you only know that it is greater than 10, you do not know its value.
Describe an extension of the simulation algorithm above which may be used to obtain
a sample from the posterior distribution for (β, λ1, . . . , λn) given the censored data.

5. (4 points)

(a) Give a description of slice sampling: What it is, and how it works.

(b) Assume we have defined a density

π(x) ∝
exp

(
−(x + 1)2

)
3 + x4

for positive real x. Describe in detail how a slice sampler would work in this case.



6. (7 points) Consider the following model: For i = 1, . . . , n, we have unobserved indicators
Xi ∼ Bernoulli(θ), with a uniform prior for θ. For data y1, . . . , yn we have

yi | Xi = 0 ∼ Normal (0, 1)

and
yi | Xi = 1 ∼ Cauchy(0, 1)

(a) Write down the formula for log(π(y1, . . . , yn, X1, . . . , Xn | θ)), the logarithm of the full
data likelihood.

(b) Compute the formula for wi = Pr[Xi = 1 | y1, . . . , yn, θ
′] (with i = 1, . . . , n).

(c) We would like to find the maximum likelihood estimate for θ using the EM algorithm:
Write down the function Q(θ | θ′) of that algorithm.

(d) Find a formula for the θ maximizing Q(θ | θ′).

(e) Explain how you would implement the EM algorithm for this model.



Appendix: Some probability distributions

The Bernoulli distribution
If x ∈ {0, 1} has a Bernoulli(p) distribution, with 0 ≤ p ≤ 1, then the probability mass function is

π(x) = px(1 − p)1−x.

The Beta distribution
If x ≥ 0 has a Beta(α, β) distribution with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial(n, α, β) distribution, with n a positive integer and
parameters α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =

(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)

Γ(α)Γ(β)Γ(n + α + β)
.

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial(n, p) distribution, with n a positive integer and 0 ≤ p ≤ 1,
then the probability mass function is

π(x | n, p) =

(
n
x

)
px(1 − p)n−x.

The Cauchy distribution
If x ≥ 0 has a Cauchy(µ, γ) distribution, with γ > 0, then the probability density is

π(x | µ, γ) =
1

πγ
(
1 +

(
x−µ
γ

)2
) .

The Exponential distribution
If x ≥ 0 has an Exponential(λ) distribution with λ > 0 as parameter, then the density is

π(x | λ) = λ exp(−λx)

and the cumulative distribution function is

F(x) = 1 − exp(−λx).



The Gamma distribution
If x > 0 has a Gamma(α, β) distribution, with α > 0 and β > 0, then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

The Geometric distribution
If the non-negative integer x has a Geometric distribution with parameter p ∈ [0, 1], its probabil-
ity mass function is given by

π(x | p) = (1 − p)x p.

The Logistic distribution
If x has a Logistic(µ, s) distribution, with s > 0, then the density is

π(x | µ, s) =
exp

(
−

x−µ
s

)
s
(
1 + exp

(
−

x−µ
s

))2

and the cumulative density function is given by

F(x) =
1

1 + exp
(
−

x−µ
s

) .
The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
σ2 (x − µ)2

)
.

The Uniform distribution
If x ∈ [a, b] has a Uniform(a, b) distribution with b > a, then the density is given by

π(x | a, b) =
1

b − a
.


