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The appendix of this exam contains informaion about some probability distributions.
Total number of points: 30. To pass, at least 12 points are needed

1. (2 points) Assume a random variable with values on the interval [0, 3] has a density π(x)
that is bounded by B, i.e., π(x) ≤ B for all x ∈ [0, 3].

(a) Describe in detail the steps of a general method with which one may generate a
sample from this distribution.

(b) Describe exactly how the efficiency of the method depends on the value of B.

2. (3 points) If the positive random variable X has a Lomax distribution with parameters α
and β, then a random value for X may be simulated by first simulating Y ∼ Gamma(α, β),
and then simulating X | Y ∼ Exponential(Y). Compute and simplify the probability density
function for X.

3. (3 points) Let π(x | θ) be a probability density for real x and θ, let f1(θ), . . . , fk(θ) be k
different prior densities, and let g1(θ | x), . . . , gk(θ | x) be the corresponding posterior
densities. Assuming θ has the prior

π(θ) = c1 f1(θ) + c2 f2(θ) + · · · + ck fk(θ)

for fixed positive constants c1, . . . , ck summing to 1, derive an expression for the postererior
density π(θ | x) in terms of π(x | θ), f1(θ), . . . , fk(θ), g1(θ | x), . . . , gk(θ | x), and c1, . . . , ck.

4. (2 points) Explain the precise difference between a Bayesian network and causal network.

5. (6 points) Assume we want to simulate from a distribution with a density proportional to
a function f (x), where x is some vector of real numbers, using the Metropolis Hastings
algorithm. Denote the proposal function by q(y | x).

(a) Write down the steps of the algorithm in terms of the functions above.
(b) Explain what the detailed balance condition is, and what role it plays in the proof of

convergence of the Metropolis Hastings algorithm.
(c) In order to make inference based from a sample derived with Metropolis Hastings,

one needs to assess how close it is to being a sample from the target density. One pos-
sibility is to use multiple independent chains, each produced with the algorith above.
Explain the idea behind this approach, and outline how one may derive information
about convergence from such a set of chains.



6. (8 points) Consider the following model:

µ ∼ Normal
(
µ0, τ

−1
0

)
τ1 ∼ Gamma (α, β)

x | µ, τ1 ∼ Normal
(
µ, τ−1

1

)
where µ0, τ0, α, β are assumed known, with α > 1.

(a) Describe in detail how to use Gibbs sampling to obtain an approximate sample from
the jont posterior for µ and τ1 given x. Include the formulas to simulate from.

(b) Assume you want to find the τ1 maximizing the marginal posterior for τ1 given x.
Describe in detail an iterative algoithm computing this. Include the formulas used in
each step.

Figure 1: The hidden Markov model used in question 6.

7. (4 points) Consider the model illustrated in Figure 1, with each Xi having possible states 0
and 1, with π(Xi+1 | Xi) the same for all i, and with

Yi | Xi = 0 ∼ Gamma(α0, 1)
Yi | Xi = 1 ∼ Gamma(α1, 1)

for fixed and different α0 and α1. Assume Y0, . . . ,YT are observed, and you want to find
the sequence X0, . . . , XT maximizing the posterior with these data. Describe an algorithm
computing this.

8. (2 points) What is Sampling Importance Resampling? Give a short explanation.

Appendix: Some probability distributions

The Bernoulli distribution
If x ∈ {0, 1} has a Bernoulli(p) distribution, with 0 ≤ p ≤ 1, then the probability mass function is

π(x) = px(1 − p)1−x.



The Beta distribution
If x ≥ 0 has a Beta(α, β) distribution with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial(n, α, β) distribution, with n a positive integer and
parameters α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =

(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)

Γ(α)Γ(β)Γ(n + α + β)
.

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial(n, p) distribution, with n a positive integer and 0 ≤ p ≤ 1,
then the probability mass function is

π(x | n, p) =

(
n
x

)
px(1 − p)n−x.

The Cauchy distribution
If x ≥ 0 has a Cauchy(µ, γ) distribution, with γ > 0, then the probability density is

π(x | µ, γ) =
1

πγ
(
1 +

(
x−µ
γ

)2
) .

The Exponential distribution
If x ≥ 0 has an Exponential(λ) distribution with λ > 0 as parameter, then the density is

π(x | λ) = λ exp(−λx)

and the cumulative distribution function is

F(x) = 1 − exp(−λx).

The Gamma distribution
If x > 0 has a Gamma(α, β) distribution, with α > 0 and β > 0, then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

The expectation and variance are α/β and α/β2, respectively, while the mode is (α − 1)/β (when
α ≥ 1).



The Geometric distribution
If the non-negative integer x has a Geometric distribution with parameter p ∈ [0, 1], its probabil-
ity mass function is given by

π(x | p) = (1 − p)x p.

The Logistic distribution
If x has a Logistic(µ, s) distribution, with s > 0, then the density is

π(x | µ, s) =
exp

(
−

x−µ
s

)
s
(
1 + exp

(
−

x−µ
s

))2

and the cumulative density function is given by

F(x) =
1

1 + exp
(
−

x−µ
s

) .
The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
σ2 (x − µ)2

)
.

The Uniform distribution
If x ∈ [a, b] has a Uniform(a, b) distribution with b > a, then the density is given by

π(x | a, b) =
1

b − a
.


