Extra exercises MSA101/MVE187, autumn 2017

Petter Mostad

October 12, 2017

1. Consider a hidden Markov model as depicted in Figure 1. We assume the X_{i} are discrete variables with three different values: 1,2 , and 3 . We assume

$$
\operatorname{Pr}\left(X_{0}=1\right)=\operatorname{Pr}\left(X_{0}=2\right)=\operatorname{Pr}\left(X_{0}=3\right)=1 / 3
$$

and for $i=1, \ldots, T$,

$$
\operatorname{Pr}\left(X_{i}=j \mid X_{i-1}\right)= \begin{cases}0.8 & \text { when } j=X_{i-1} \\ 0.1 & \text { when } j \neq X_{i-1}\end{cases}
$$

We assume the Y_{i} are non-negative whole numbers, with

$$
Y_{i} \mid X_{i} \sim \operatorname{Poisson}\left(\lambda_{X_{i}}\right)
$$

where λ_{1}, λ_{2}, and λ_{3} are parameters. We assume the values of Y_{0}, \ldots, Y_{T} are observed as y_{0}, \ldots, y_{T}.
Define, for $i=0, \ldots, T$ and $j=1,2,3$,

$$
b_{i j}=\operatorname{Pr}\left(x_{0}, \ldots, x_{i}, y_{0}, \ldots, y_{i}\right)
$$

where x_{0}, \ldots, x_{i} is the sequence of values for X_{0}, \ldots, X_{i} maximizing the probability, where we demand that $x_{i}=j$. Let $c_{i j}$ be the value of x_{i-1} in this sequence.
(a) Assuming all $b_{i j}$ and $c_{i j}$ have been computed for $i \leq k$. Find formulas for $b_{k+1, j}$ and $c_{k+1, j}$.
(b) Assuming all the $b_{i j}$ and $c_{i j}$ have been computed, describe an algorithm that produces the sequence x_{0}, \ldots, x_{T} maximizing the probability of the data y_{0}, \ldots, y_{T} in this model. Give the name of the algorithm.
2. Consider a hidden Markov model like the one depicted in Figure 1. We assume the variables are Normally distributed, with

$$
X_{0} \sim \operatorname{Normal}\left(0, \frac{1}{\tau_{0}}\right)
$$

for $i=1, \ldots, T$

$$
X_{i} \left\lvert\, X_{i-1} \sim \operatorname{Normal}\left(X_{i-1}, \frac{1}{\tau_{x}}\right)\right.
$$

and for $i=0, \ldots, T$

$$
Y_{i} \left\lvert\, X_{i} \sim \operatorname{Normal}\left(X_{i}, \frac{1}{\tau_{y}}\right)\right.
$$

We assume the precision parameters $\tau_{0}, \tau_{x}, \tau_{y}$ are given, as well as values y_{0}, \ldots, y_{T} for the variables Y_{0}, \ldots, Y_{T}.
(a) Assume we have shown, for some $0 \leq i<T$, that

$$
X_{i} \mid y_{0}, \ldots, y_{i} \sim \operatorname{Normal}\left(a_{i}, \frac{1}{t_{i}}\right)
$$

for some parameters a_{i} and t_{i}. Prove that $X_{i+1} \mid y_{0} \ldots, y_{i+1}$ is Normally distributed, and find formulas for the parameters of this distribution in terms of $a_{i}, t_{i}, \tau_{0}, \tau_{x}, \tau_{y}, y_{0}, \ldots, y_{i}$.
(b) Assume you have shown, for some $0<i \leq T$, that the likelihood

$$
\pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right)
$$

as a function of x_{i} is proportional to a normal distribution with expectation b_{i} and precision s_{i}. Show that the likelihood

$$
\pi\left(y_{i}, y_{i+1}, \ldots, y_{T} \mid x_{i}\right)
$$

as a function of x_{i} is also is proportional to a normal distribution, and find the parameters of this distribution.
(c) Assume you have shown that the likelihood

$$
\pi\left(y_{i}, \ldots, y_{T} \mid x_{i}\right)
$$

as a function of x_{i} is proportional to a normal likelihood with parameters c_{i} och prercision w_{i}. Show that the likelihood

$$
\pi\left(y_{i} \ldots, y_{T} \mid x_{i-1}\right)
$$

is also proportional to a normal likelihod, and find its parameters.
(d) Given the above definitions and computations, show that, for all $i=0, \ldots, T$,

$$
X_{i} \mid y_{0} \ldots, y_{T}
$$

is Normally distributed, and find the parameters of this distribution in term of previously computed variables.
(e) The above computations can also be adapted into an algorithm simulating X_{0}, \ldots, X_{T} in the distribution

$$
\pi\left(X_{0}, \ldots, X_{T} \mid y_{0}, \ldots, y_{T}\right)
$$

Explain how.
3. Reconsider exercise 1 above, but now assume that the parameters $\theta=$ $\left(\lambda_{1}, \lambda_{2}\right.$, and $\left.\lambda_{3}\right)$ are unknown. Find a maximum likelihood estimate for these parameters as follows:
(a) Assuming you view X_{0}, \ldots, X_{T} as augmented data, find a formula for the full data likelihood, i.e.,

$$
\pi\left(X_{0}, \ldots, X_{T}, Y_{0}, \ldots, Y_{T} \mid \lambda_{1}, \lambda_{2}, \lambda_{3}\right)
$$

Use a notation where you use exponents with $I\left(X_{i}=j\right)$, where I is the indicator function.
(b) Fixing $\theta^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \lambda_{3}^{\prime}\right)$, describe how one may compute the marginal distribution of each X_{i}.
(c) Compute the function $Q\left(\theta, \mid \theta^{\prime}\right)$ of the EM-algorithm.
(d) Describe how you may maximize $Q\left(\theta \mid \theta^{\prime}\right)$ as a function of $\theta=\left(\lambda_{1}, \lambda_{2}\right.$, and λ_{3}).
(e) Describe how you may put together your answers above to obtain an algorithm answering the original question.
4. Reconsider exercise 2 above, now assuming the parameters $\theta=\left(\tau_{0}, \tau_{x}, \tau_{y}\right)$ are unknown. Find a maximum likelihood estimate for these parameters as follows:
(a) Assuming you view X_{0}, \ldots, X_{T} as augmented data, find a formula for the full data likelihood

$$
\pi\left(X_{0}, \ldots, X_{T}, Y_{0}, \ldots, Y_{T} \mid \tau_{1}, \tau_{2}, \tau_{3}\right)
$$

(b) Fixing $\theta^{\prime}=\left(\tau_{1}^{\prime}, \tau_{2}^{\prime}, \tau_{3}^{\prime}\right)$, describe how one may compute the marginal distribution of each X_{i}.
(c) Compute the function $Q\left(\theta \mid \theta^{\prime}\right)$ of the EM-algorithm.
(d) Describe how you may maximize $Q\left(\theta \mid \theta^{\prime}\right)$ as a function of $\theta=\left(\tau_{1}, \tau_{2}\right.$, and τ_{3}).
(e) Describe how you may put together your answers above to obtain an algorithm answering the original question.

Figure 1: A hidden Markov model

