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1. Consider a hidden Markov model as depicted in Figure 1. We assume
the X; are discrete variables with three different values: 1, 2, and 3. We
assume

PI'(XO = 1) = PI‘(XO = 2) = PI'(XO = 3) = ]_/3
and fori=1,...,T,

v y_ J08 whenj=X; 4
Pr(Xe =] Xiy) = {0.1 when j # X;_

We assume the Y; are non-negative whole numbers, with
Y; | X; ~ Poisson(Xx;),

where A1, A2, and A3 are parameters. We assume the values of Yy, ..., Yr
are observed as o, ..., Y.

Define, for : =0,...,T and j = 1,2, 3,
sz :Pr($07"'7$i7y07"‘7yi)

where xg, ..., x; is the sequence of values for Xj, ..., X; maximizing the
probability, where we demand that x; = j. Let ¢;; be the value of ;1 in
this sequence.

(a) Assuming all b;; and ¢;; have been computed for i < k. Find formulas
for by41,; and cp41,5.

(b) Assuming all the b;; and ¢;; have been computed, describe an algo-

rithm that produces the sequence zg, ...,z maximizing the prob-
ability of the data yg,...,yr in this model. Give the name of the
algorithm.

2. Consider a hidden Markov model like the one depicted in Figure 1. We
assume the variables are Normally distributed, with

1
Xo ~ Normal(0, —),
o



fori=1,...,T

1
X | Xi—1 ~ Normal(X;_1, —),

Tx

and for i =0,...,T

1
Y; | X; ~ Normal(X;, —).

Ty

We assume the precision parameters 79, 7, 7, are given, as well as values

Yo, - - -

(a)

syt for the variables Yy, ..., Yr.

Assume we have shown, for some 0 < i < T, that

1
Xi | yo,.--,y; ~ Normal(a;, t—)

%

for some parameters a; and ¢;. Prove that X;i1 | yo...,yi+1 is
Normally distributed, and find formulas for the parameters of this
distribution in terms of a;, t;, 70, 7w, Ty, Yo, - - - » Yi-

Assume you have shown, for some 0 < ¢ < T, that the likelihood

W(yi+1>~--»yT|xi)

as a function of x; is proportional to a normal distribution with ex-
pectation b; and precision s;. Show that the likelihood

T(Yis Yit1, - YT | T3)
as a function of x; is also is proportional to a normal distribution,
and find the parameters of this distribution.

Assume you have shown that the likelihood

T(Yir - Y7 | 1)

as a function of x; is proportional to a normal likelihood with pa-
rameters ¢; och prercision w;. Show that the likelihood

7T(?Ji~--,yT | fUi—1)

is also proportional to a normal likelihod, and find its parameters.

Given the above definitions and computations, show that, for all
1=0,...,T,
Xilvo---,yr

is Normally distributed, and find the parameters of this distribution
in term of previously computed variables.



()

The above computations can also be adapted into an algorithm sim-
ulating Xo, ..., X7 in the distribution

W(X07~-07XT|Z/0,-~~73/T)

Explain how.

3. Reconsider exercise 1 above, but now assume that the parameters 6 =
(A1, A2, and A3) are unknown. Find a maximum likelihood estimate for
these parameters as follows:

(a)

(b)

()
(d)

()

Assuming you view X, ..., X7 as augmented data, find a formula
for the full data likelihood, i.e.,

m(Xo, ..o, X1, Yo, .., Y7 [ A1, A2, A3)
Use a notation where you use exponents with I(X; = j), where I is

the indicator function.

Fixing 6’ = (A, M5, A\5), describe how one may compute the marginal
distribution of each Xj.

Compute the function Q(0,]| 8’) of the EM-algorithm.

Describe how you may maximize Q(6 | ") as a function of 8 = (A1, Az,
and )\3)

Describe how you may put together your answers above to obtain an
algorithm answering the original question.

4. Reconsider exercise 2 above, now assuming the parameters 6 = (19, 7, 7))
are unknown. Find a maximum likelihood estimate for these parameters
as follows:

(a)

Assuming you view X, ..., X7 as augmented data, find a formula
for the full data likelihood

©(Xo, ..., X1, Y0, ..., Y7 | 71,72, 73)

Fixing ¢’ = (71,74, 74), describe how one may compute the marginal
distribution of each X;.

Compute the function Q(6 | 8') of the EM-algorithm.

Describe how you may maximize Q(6 | 6’) as a function of § = (71, 72,
and 73).

Describe how you may put together your answers above to obtain an
algorithm answering the original question.



Figure 1: A hidden Markov model



