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1. (a) We have
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To maximize this for fixed x) and xky1, we may use the values of
xg, ..., Tkp_1 optiming the last factor for this x. Thus, the above is
equal to
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Now, for each possible value of zj1:

e Compute the above expression for the different values of x.
e Store the maximum of these values as byy1 2,

e Store the value of z; giving the maximum as cx41,4,,,-
(b) First, we find the j maximizing by ;, and set xp = j. Then, for each
i=T—-1,...,0, we set

Ty = Ci+1,zi+1

2. (a) Using that
1
XiJrl | Xz ~ Normal(Xi, 7)
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and
1
Xi | yo,---,y; ~ Normal(a;, t—)
we get that
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Further, using also that

1
yi+1 | Xi+1 ~ Normal(Xi_,_l, ?)
Y
and the standard formula for updating a normal-normal conjugacy,
we get
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and thus that
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We get
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As
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x; | £;—1 ~ Normal(x;_1, —)
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we get, as in (a), and using the result of (b) above,
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(d) Bayes formula gives

m(@i | Yo, yr) X T(Yiv1, .- yr | @)m(@i | Yo, vi)

With the prior Normal(x;; a;, +) and the likelihood Normal(z;; b;, =)
we get the posterior
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(e) From (d), we know the marginal distribution of X given the data,
and we may start with simulating x7. Then, using that

7(Xr—1 | 27,90, .-, yr) < T(X7_1 | Yo, yr—1)m(zr | X7_1)

we may use the computed values of a; and t¢;, together with the
likelihood of 7(z7 | X7—_1), to compupte the normal posterior, and
then simulate from it. Similar steps can now be repeated for ¢ =
T-2,...,0.

3. (a) We get

T
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(b) One may use the Forward-Backward algorithm. Define, for i =
0,...,Tand 5 =1,2,3,

aij :PI(XZ‘ :j|y07~--7yi39/)
and fori=0,...,7—1and j=1,2,3,

bz_] == Pr(yi+1,.. YT | Xi>0/)7

writing also by; = 1. We use the forward-backward algorithm to
recursively compute values for a;; and b;;. With these computed, we
can write

(X | Yo,y 0') xx, T(Yiv1s-- - yr | X, 0)7(Xi | yo, .-, v, 0")
and so we get, fort =0,...,7T,

aijbij
a;1bi1 + a2biz + a;3bi3

wij :PI‘(Xlz.] ‘ yo,...,yT,G') =

which are the numbers we needed to compute.
The forward-backward algorithm has the following steps:



m(Xo | %0,0") o<, 7(yo | Xo,0")7(Xo)
we get
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e When ¢ > 0 we get
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e For i < T, we geet
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(c) We get
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where the w;; were defined in the answer of (b).

(d) For j =1,2,3 we may differentiate Q(6 | ') with respect to A; and
set to zero. This results is
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(e) The full algorithm would go as follows: First, derive some starting
values for A1, A2, A3. Note that the model is completely symmetric
under permutation of the indices of the \’s, so for every local maxi-
mum we find, there will be others where the \’s are permuted. Which
one we reach will be determined by the starting vector of the A’s; one
may choose A\; < Ay < A3 with reasonable values compared to the
mean values of the y;. Then, the algorithm would iterate between
running the forward-backward algorithm to compute the values of
the w;;, and updating the values of the A; according to (d), until
connvergence is reached.

(a) we get
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(b) This is exactly the answer to exercise 2(d) above. In the following,
let us use the notation

1
X | yo,---,yr,0 ~ Normal (mi, u)

i
where m; and wu; are the values computed as in 2(d).

(c) Using (a) we get
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We see from this that we actually need to go back to the Forward-
Backward algorithm to be able to compute FEy [X;X;_1].



Note that

m(Xi—1 | Xivy0, -5y, 0") = m(Xic1 | Xivyo, -5 yio1,6)
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Using the notation from exercise 2, computing with parameters ',

we have
1
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Using the conjugacy formula, we get
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For the remaining expressions, we have, from (b),
Eo[Xi] =m;

and .
Eo[X? = Varg[X;] + Eo [ X,)> = — +m?
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Differentiating Q(6 | 8") for each parameter and setting the result to
zero yields
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The full EM algorithm would consist of first estimating reasonable
starting values for 79, 7, and 7,. Then, one would iterate between
computing the expectations as in (c¢) and the new variable values as
in (d), until converrgence.



