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Graphical representation of conditional independencies

I Any stochastic model can be described as a set of variables and a
joint probability distribution for them.

I The key to describing, understanding, and computing with such
models is to describe conditional independencies between the
variables.

I Various graphical model types use various definitions to represent
conditional independencies. The main advantages are:

I Visualization and communciation of models.
I The possibiliy to apply graph-theoretic algorithms.

I Several ways of employing graphs to represent independencies exist.
We will consider the two most important:

I Bayesian Networks, using directed acyclic graphs (DAGs)
I Markov Networks, using undirected graphs.
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Bayesian Networks

I A Bayesian Network consists of
I A directed acyclic graph (DAG), and
I For each node i in the network, a variable xi and a conditioinal

probability distribution
π(xi | XPa(i))

where XPa(i) is the set of variables corresponding to the parent nodes
of i in the network.

I The corresponding stochastic model is the product over the
conditional probability distributions.

I Note:
I The same stochastic model can be represented with many different

graphs.
I The graphs do not necessarily represents causality (we look at this

later).
I Statements about conditional independencies can be computed from

the graph.
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Examples

I Markov chains, hidden Markov models, ....

I Hierarchical models.

I Models specified directly as Bayesian Networks: An example:
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Conditional independencies in Bayesian Networks

I Nodes that do not share decendants are conditionally independent
given their shared ancestors.

I Note: Fixing the value of a common decendant of two variables can
make them dependent.
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A taste of graph theory for Bayesian Networks

I A trail between nodes a and b in a DAG is a path disregarding the
arrow directions.

I A trail from a to b is blocked by a set of nodes S if it contains a
node γ such that

I either the trail meets in a ”V” at γ and γ and its decendants are not
in S ,

I or the trail does not meet in a ”V” at γ, and γ ∈ S .

I If all trails between a and b are blocked by S for all a ∈ A and
b ∈ B, then A and B are said to be d-separated by S .

I If A and B are d-separated by S in a BN, then A
∐

B | S , meaning
that A and B are conditionally independent given S .

I If A and B are not d-separated by S in a DAG, then there exists a
BN with this DAG as its graph where we do not have A

∐
B | S .
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Markov networks

I A Markov Network consists of
I an undirected graph,
I for each node in the graph, a variable, and
I a set of functions (called factors) on subsets of variables, such that

all nodes corresponding to the variables in the subset are connected
by edges.

I The product of all the factors is the joint density of the model IF the
product has a finite integral (or sum) over the variables, so that it
can be scaled to 1.

I Conditional independencies can be deduced from the graph.

I All Bayesian Networks can be transformed into Markov networks.

I There are joint distributions whose set of conditional independencies
can be represented with a Markov network, but not with a Bayesian
network.

I An important issue when using these networks is to ensure that the
joint distribution is proper.
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Example: Gaussian Markov random fields

I A Gaussian Markov random field (GMRF) is one where all the
conditional distributions are normal, as follows:

Z | Z1, . . . ,Zk ∼ Normal(µZ + β1Z1 + · · ·+ βkZk ,ΣZ )

I The joint distribution of all variables in the network becomes
multivariate normal, IF it is proper.

I For example, one may set up a spatial model identifying a set of
neighbours for each variable, and define its conditional distribution
to depend only on the neighbours, specifically to be a normal
distribution with expectation equal to the mean of the neighbours.
This model is initially not proper; one may for example add the
condition that the mean of all variables should be zero to make it
proper.
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A note about multivariate normal distributions

Assume the joint distribution for variables Z1, . . . ,Zk is multivariate normal.
Then

I If we integrate out Zi , the convariance matrix for the remaining variables
is equal to the submatrix corresponding to these variables of the
covariance matrix for the joint distribution. (We knew this).

I If we fix Zi , the precision matrix (inverse covariance matrix) for the
remaining variables is equal to the submatrix corresponding to these
variables of the precision matrix for the joint distribution. See below:

Given the joint normal distribution

[θ1, θ2] ∼ Normal

(
[µ1, µ2],

[
P11 P12

P21 P22

]−1
)

, we get the conditional

distribution θ1 | θ2 ∼ Normal
(
µ1 − P−1

11 P12(θ2 − µ2),P−1
11

)
. Proof: Use the

identity ([
θ1
θ2

]
−
[
µ1

µ2

])t [
P11 P12

P21 P22

]([
θ1
θ2

]
−
[
µ1

µ2

])
=

(
θ1 − µ1 + P−1

11 P12(θ2 − µ2)
)t

P11

(
θ1 − µ1 + P−1

11 P12(θ2 − µ2)
)

+(θ2 − µ2)t(P22 − P21P
−1
11 P12)(θ2 − µ2).
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GMRFs vs. precision matrices

For a Gaussian Markov random field, the following holds:

I If a corresponding Markov network does not contain an edge
between two variables, the corresponding entry of the precision
matrix for the joint distribution is zero.

I Given a precision matrix for a joint distribution, we can construct a
factorization with a Markov network which only contains edges
where the precision matrix is non-zero.

I Thus, as Gaussian Markov random fields tend to be defined with
simple Markov networks, they have sparse precision matrices, which
is taken advantage of in computational methods.
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Computations for Graphical models

I Given a graphical model, we might want to
I Follow the Bayesian paradigm and find the conditional distribution of

some nodes (variables) given fixed values (data) for some other
nodes. Two approaches: Simulation or exact inference.

I Given fixed values (data) for some nodes, find the maximum
aposteriori (MAP) for some other set of nodes, i.e., their values
maximizing the posterior density. As an example of this, one might
estimate the ML values of parameters in a network specified with
unknown parameters.

I Given data and prior knowlege, one may want to learn the structure
of a suitable BN or Markov model.
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Exact posterior inference for graphical models

I Given a model represented as a Bayesian Network (or Markov
network), the goal of inference (as in any Bayesian computation) is
to compute the marginal distribution of some variables of interest,
conditionally on fixing some other variables, called data.

I For a Markov network, fixing some variables produces directly
another similar Markov network.

I A Bayesian Network may first be converted to a Markov network.

I A direct way to obtain a marginal distribution in a Markov network
is variable elimination:

I Integrating (or summing) out variables in factors.
I Multiplying together factors.

I Any inference algorithm depends on the basic operations above, but
they can be ”scheduled” in smart ways, using e.g. ”message
passing” algorithms.
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Example: The Forward-Backward algorithm

Message passing applied to the following Bayesian Network: A Hidden Markov
Model

Objective: Compute the marginal posterior distribution of every xi given data
y0, . . . , yT : Use π(xi | y0 . . . , yT ) ∝ π(yi+1, . . . , yT | xi )π(xi | y0, . . . , yi ) and

1. Forward: For i = 0, . . . ,T compute π(xi | y0, . . . , yi ) using

π(xi | y0, . . . , yi ) ∝ π(yi | xi )π(xi | y0, . . . , yi−1)

= π(yi | xi )
∫
π(xi | xi−1)π(xi−1 | y0, . . . , yi−1) dxi−1

2. Backward: For i = T − 1, . . . , 0 compute π(yi+1, . . . , yT | xi ) using

π(yi+1, . . . , yT | xi ) =

∫
π(yi+2, . . . , yT | xi+1)π(yi+1 | xi+1)π(xi+1 | xi ) dxi+1
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