MSA101/MVE187 2017 Lecture 12

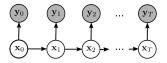
Petter Mostad

Chalmers University

October 5, 2017

Example: The Forward-Backward algorithm

Message passing applied to the following Bayesian Network: A Hidden Markov Model



Objective: Compute the marginal posterior distribution of every x_i given data y_0, \ldots, y_T : Use $\pi(x_i \mid y_0, \ldots, y_T) \propto \pi(y_{i+1}, \ldots, y_T \mid x_i)\pi(x_i \mid y_0, \ldots, y_i)$ and

1. Forward: For i = 0, ..., T compute $\pi(x_i \mid y_0, ..., y_i)$ using

$$\begin{array}{ll} \pi(x_i \mid y_0, \dots, y_i) & \propto & \pi(y_i \mid x_i) \pi(x_i \mid y_0, \dots, y_{i-1}) \\ & = & \pi(y_i \mid x_i) \int \pi(x_i \mid x_{i-1}) \pi(x_{i-1} \mid y_0, \dots, y_{i-1}) \, dx_{i-1} \end{array}$$

2. Backward: For i = T - 1, ..., 0 compute $\pi(y_{i+1}, ..., y_T \mid x_i)$ using

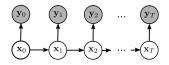
$$\pi(y_{i+1},\ldots,y_{\mathcal{T}} \mid x_i) = \int \pi(y_{i+2},\ldots,y_{\mathcal{T}} \mid x_{i+1})\pi(y_{i+1} \mid x_{i+1})\pi(x_{i+1} \mid x_i) dx_{i+1}$$

Finding the maximum aposteriori (MAP) in graphical models

- A basic example: The Viterbi algorithm, for HMMs.
- A more advanced example: The Baum-Welch algorithm, for estimating parameters in HMMs.
- The ideas of the two examples above can be generalized into handling graphical models where the graph does not contain loops.
- When the graph contains loops, the problem may be very hard (NP) and approximate solutions may be necessary.

The Viterbi algorithm

We start with an HMM where the x_i have a finite state space $\{1, \ldots, k\}$:

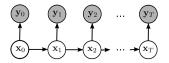


Objective: Compute the vector x_0, \ldots, x_T which gives the highest posterior, for given fixed values of the y_i . IDEA: Compute and store, recursively, for $i = 0, \ldots, T$, the following:

- For j = 1, ..., k:
 - The vector $(\hat{x}_1, \ldots, \hat{x}_i)$ maximizing $\pi(\hat{x}_1, \ldots, \hat{x}_i, y_1, \ldots, y_i)$ with $\hat{x}_i = j$. NOTE: Only the value of \hat{x}_{i-1} needs to be stored!
 - The value of this maximum.
- ▶ Because of indepenencies, the first *i* − 1 values of (*x̂*₁,..., *x̂_i*) will always correspond to those considered at the *i* − 1'th step.
- ► At any point, (x̂₁,..., x̂_i) can be reconstructed tracing backwards through stored information.
- ► The recursion step consists in considering all possible combinations of x_{i-1} and x_i.

The Baum-Welch algorithm

We start with an HMM where all the nodes have a finite state spaces



but where the parameters of the distributions $\pi(X_0)$, $\pi(X_i | X_{i-1})$, and $\pi(Y_i | X_i)$ are unknown. Objective: Given fixed values for the y_i , find maximum likelihood estimates for the parameters in the model.

- Note: By adding nodes representing the unknown parameters, and assuming flat priors, the problem becomes that of computing a MAP.
- ▶ Idea: Use the EM algorithm, with the values of the *x_i* as the augmented data.
- The E step of the EM algorithm is computed using the Forward-Backward algorithm.