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Inference using simulation in graphical models

I Exact inference is in graphical models can easily become intractable,
in particular for moderately-sized or large networks, and in particular
when the graph is not sparse, or contains long loops.

I Various types of approximate methods can then be used.

I One very attractive method is simulation from the posterior using
Gibbs sampling: The conditional distribution needed in the Gibbs
samples can often be derived easily from the network.
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Inference using Gibbs sampling in Bayesian Networks

I The conditional distribution for a variable in a Bayesian network
involves its parents and its immediate decendants.

I The conditional distribution can be found with a single application
of Bayes theorem.

I The computation is particularly simple when the distribution of the
variable given its parents is conjugate to the likelihood defined by its
decendants. In other cases, various types of simulation methods (like
rejection sampling) can be employed, based on the nature of the
distributions.

I Widely used programs like BUGS (WinBugs, OpenBugs), Jags (Just
Another Gibbs Sampler), and Stan offer ”black box”
implementations of Gibbs sampling on wide classes of Bayesian
Networks.
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Inference using Gibbs sampling in Markov networks

I Markov networks are often specified by listing exactly the conditional
distributions used in a Gibbs sampler.

I Gibbs sampling using these conditional distributions will work, but
convergence speed may be a problem.

I When a Markov network is a component in a more complex model,
it may be convenient to use Gibbs sampling for the whole model,
including for inference for hyperparameters.
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Causal networks

I Bayesian networks, like stochastic models in general, have nothing to
do with causality. (”Correlation is not causation”).

I However, one may add the following interpretation to a Bayesian
network, to obtain a causal network: If one intervenes at a node
(which is different from observing the value of the node) the
probability distribution for the remaining nodes is given by the
Bayesian network obtained from the old one by removing the
conditional distribution for the intervention node.

I Example, with rain and umbrella.

I In general, one would like to infer causal networks from data:
Methods may be difficult and controversial.
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Some software for graphical model inference

I Exact inference: Genie/Smile: Stand-alone programs for inference.
Hugin: Commercial software.

I Simulation inference: BUGS. Jags, Stan, ....

I R packages. Also for learning the network.
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The slice sampler

I Idea: Do Gibbs sampling from ”the area under the density curve”.

I More formally, simmulate from the density

f (x , u) = I (0 < u < fx(x))

I The density needs to be known only up to a constant.

I The challenge is to simulate x uniformly on {x : fx(x) > u}.

I Example 7.10 in RC.

I Generalization: When f (x) =
∏n

i=1 gi (x) we can define the joint
density

h(x , u1, . . . , un) =
n∏

i=1

I (0 < ui < gi (x))

I Simulate x uniformly on ∩n
i=1{x : gi (x) > ui}.
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Example: Logistic regression

(Example 7.11 in RC, but book contains errors)

I Data (x1, y1), . . . , (xn, yn); yi ∼ Bernoulli(p(xi )); p(xi ) = exp(a+bxi )
1+exp(a+bxi )

I Using a flat prior, simulate from posterior for (a, b) using slice sampling.

I π(a, b | data) ∝
∏n

i=1

(
exp(a+bxi )

1+exp(a+bxi )

)yi ( 1
1+exp(a+bxi )

)1−yi
=
∏n

i=1
exp(a+bxi )

yi

1+exp(a+bxi )

I For i = 1, . . . , n, simulate ui ∼ Uniform
[
0, exp(a+bxi )

yi

1+exp(a+bxi )

]
.

I Simulate (a, b) uniformly on set satisfying, for all i , exp(a+bxi )
yi

1+exp(a+bxi )
> ui .

I Corresponds to a + bxi > log(ui/(1− ui )) for i with yi = 1, and
a + bxi < log((1− ui )/ui ) for i with yi = 0.

I Extend the Gibbs sampling, simulating for a

a ∼ Uniform

[
max
yi=1

(
log

ui
1− ui

− bxi

)
,minyi=0

(
log

1− ui
ui

− bxi

)]
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Logistic regression, cont.

I For b, we need to be more careful, simulating b uniformly in the interval
of numbers

I Greater than
(

log ui
1−ui
− a
)
/xi for i with yi = 1 and xi > 0.

I Smaller than
(

log ui
1−ui
− a
)
/xi for i with yi = 1 and xi < 0.

I Smaller than
(

log 1−ui
ui
− a
)
/xi for i with yi = 0 and xi > 0.

I Greater than
(

log 1−ui
ui
− a
)
/xi for i with yi = 0 and xi < 0.

I See code mychallenge.R on course home page for implementation and
example.

I NOTE: a and b are highly correlated! Convergence improved by centering
data!

I Errors in RC:

I Confusion beween (a, b) and (α, β)
I Second and fourth formulas on page 220 are wrong.
I No need to use a prior for a and b to get this to work; use centering

instead.
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Reparametrizations

I Because the Gibbs sampler changes some parameters at the time, its
properties can be very sensitive to a reparametrizatioin.

I Generally, re-parametrizations that diminish correlation between
variables will benefit the convergence speed!

I A way to improve convergence speed may be to simply make sure
observed data values average to zero (and have similar variance).
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Convergence in practice for MCMC sampling

I How many values do we need to simulate?
I Convergence in distribution: A sample where every value is

approximately sampled from the target distribution.
I Convergence of averages, i.e., expectations. Monte Carlo Integration.
I An apprroximate i.i.d. sample.

I Except for very special circumstances it is very difficult to obtain
precise and useful statements about the degree of convergence.

I Some general advice:
I Remove the first part of the simulated values (the ”burn-in”) before

making inference.
I You may remove all but every k’th simulated value (”thinning”).

Only useful if you need an approximate i.i.d. sample. Check the
autocorrelation!

11 / 15



Graphical and numerical monitoring of the chain

I Monitoring chain values, and cumulative averages.

I Non-parametric tests of stationarity.

I Effective sample size.

I Use several parallell chains!
I Gives direct and intuitive ways to check if the chains have ”mixed”.
I Specialized tests for convergence have been developed, comparing

the variance between and the variance within chains. See RC.
I However, your starting values need to be spread out so that all parts

of the posterior density are visited. May be difficult in high
dimensions.

I Consider your specific model to see if there are reasons to suspect
non-convergence.
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The coda R package

I Provides a convenient implementation of many proposed
convergence monitoring methods

I Output from your own MCMC implementation can be converted to
appropriate objects with the mcmc() and the mcmc.list()

functions.

I Standard functions like plot and summary now give output relevant
to the MCMC setting.

I A large number of specialized monitoring tools are also implemented.
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Using improper priors

I It is quite useful to use improper priors: Completely OK as long as
the posterior becomes proper.

I Proving that the posterior is proper may be difficult and may
unfortunately be forgotten about.

I The output of a Metropolis-Hastings or Gibbs algorithm applied to
an improper distribution will often look like some kind of random
walk. HOWEVER; it may not be direcly obvious to spot the problem
from the output!

I Examples 7.18, 7.19 in RC
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Hybrid Gibbs Metropolis-Hastings methods

I The Metropolis-Hastings / Gibbs framework is very flexible: Often
you can mix and match together many different alternative steps
that the algorithm can switch between. As long as you can prove

1. The target distribution is stationary for each (combination of)
step(s).

2. The Markov chain defined by the whole algorithm has a unique
stationary distribution.

you are OK.
I The objective of using hybrid methods is generally to speed up

convergence.
I A common strategy may be to intersperse Gibbs sampling steps with

Metropolis-Hastings specialized steps that change many variables
simultaneously, to ”jump” from one area with high likelihood to
another.

I Another strategy may be to let the computer select randomly at
each step between using a step from one of k possible
Metropolis-Hastings algorithm for the target distribution. May be
faster than figuring out which one has good convergence properties
various situations.
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