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Basic Bayesian inference

Example: Learning about a proportion

» An experiment is performed n times. We assume there is a
probability p for "success” each time, and that the outcomes are
independent. Let X be the observed number of successes. We get
X ~ Binomial(n, p). Given X = x, what do we know about p?

» For a Bayesian analysis, we need a joint probability distribution
(density) 7(X, p). We have defined 7(X | p) (the likelihood). We
need to define 7(p) (the prior).

> Let us first try with the prior p ~ Uniform[0, 1].

» The conditional model 7(p | X = x) (the posterior for p) can be
computed with Bayes formula. We get

Mn+2)

TP I X=X = e D=+ D

p(1—p)"

» We can recognize this as a Beta distribution:
p| X =x~Beta(x+1,n—x+1)
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Basic Bayesian inference

Review of definition: The Beta distribution

0 has a Beta distribution on [0, 1], with parameters « and 3, if its density has

the form .
71—(6 | CY,/B) = B(Oé 5)904—1(1 - 0)5_1
where B(«, 3) is the Beta function defined by
_ H(a)F(B)
B(a, B) = Tlatp)

where I'(t) is the Gamma function defined by

I'(t):/ x'te ™ dx
0

Recall that for positive integers, (n) =(n—1)!'=0-1----- (n—1). See for
example Wikipedia for more properties of the Beta distribution, and the Beta
and Gamma functions. We write 7(0 | «, 3) = Beta(f; a, 8) for the Beta
density.

3/10



Basic Bayesian inference

Using a Beta distribution as prior

» Assume the prior is p ~ Beta(a, 3).
» The posterior becomes

p| (X =x)~Beta(a+x,8+n—x)

» DEFINITION: Given a likelihood model w(x | 8). A conjugate family
of priors to this likelihood is a parametric family of distributions so
that if the prior for § is in this family, the posterior 6 | x is also in
the family.
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Basic Bayesian inference

Using a discrete prior

» What if thf prior for p is a discrete distribution, i.e.,
m(p) = Z,‘:l I(p = pi)ai?
» The conditional model is obtained with Bayes theorem:

Plp— _ wlx|p=p)a Pl —pi)" g
(p = Pi | X) - k - k X nexp.
Yimm(x |l p=pi)a i P(1—p)" g

» Computationally, you compute the vector of likelihoods, multiply

termwise with the vector (qu, ..., gk) of prior probabilities, and
normalize to 1.
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Basic Bayesian inference

Using discretization

» Assume you have ANY prior, with density 7(p) on [0,1]. This
density can be approximated, generally with reasonable accuracy,
with a discrete distribution, a discretization.

» The corresponding posterior produced by discretization can be easily
produced by computer: Compute the likelihood on a grid over p,
compute the prior on the same grid, multiply, and normalize.

» NOTE: This works for ANY likelihood, as long as the parameter p
has a prior distribution on a bounded set.
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Basic Bayesian inference

Discretizations useful in low dimensions

» The idea above can be extended to any model with 2 parameters, as
long as they have a prior density on a bounded set. We come back
with examples in the next lecture!

» This is an approximation. Accuracy will decrease dramatically when
the number of (discretized) parameters increase beoynd 2 or 3
(why?). Thus discretization is rarely useful when there are more
than 2-3 parameters.

7/10



Basic Bayesian inference

Prediction

The Bayesian paradigm implies:

>
>

The usefulness of a model lies in its ability to predict.

We create a joint probability model for the parameters 6, the observed
data x, and data we would like to predict x,ew. Often on the form
(0, X, Xpew) = w(0)7(x | O)7(Xnew | 0).

The distribution for xpew is given by conditioning on the observed x and
marginalizing out 6:

(e | X) = /0 (0, Xpew | %) dO = /0 (e | 0,X)7(0 | x) dO
- / (Xoew | 0)7(0 | x) 6

0
This is called the posterior predictive distribution.

It is also possible to look at the predictive distribution for x before it has
been observed. This is called the prior predictive distribution:

(x) = /9 (x,0) dO = /0 (x | 0)x(0) d
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Conjugate priors

Example: the Normal-Normal conjugacy

>

Assume 7(x | ) = Normal(x; 6,1/7), where 7 is a known and
fixed precision.

v

Then (0 | u, 7) = Normal(6; u, 1/7), where 7 is positive and pu has
any real value, is a conjugate family.

v

Specifically, we have the posterior

1
(0 | x) = Normal (0; M, >
To+T7T "To+T

v

PROOF: Use completion of squares.
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Conjugate priors

(0] x)

Xo

Xo

Xo

Xo

g

(x| )7 (6)
T
><p( > )exp (—*(9 u))
exp ( ToX — 2790 + 100% + 70 — 210p + T ])
exp ( (10 + 7)0% — 2(7ox + T,u)0]>

Normal

7
1
2
1
5
1 ToX + T 2
exp( 5(7’04-7’) <9—TO+T>>
ozt
To+T ‘T0+T
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