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Example: Learning about a proportion

I An experiment is performed n times. We assume there is a
probability p for ”success” each time, and that the outcomes are
independent. Let X be the observed number of successes. We get
X ∼ Binomial(n, p). Given X = x , what do we know about p?

I For a Bayesian analysis, we need a joint probability distribution
(density) π(X , p). We have defined π(X | p) (the likelihood). We
need to define π(p) (the prior).

I Let us first try with the prior p ∼ Uniform[0, 1].

I The conditional model π(p | X = x) (the posterior for p) can be
computed with Bayes formula. We get

π(p | X = x) =
Γ(n + 2)

Γ(x + 1)Γ(n − x + 1)
px(1− p)n−x .

I We can recognize this as a Beta distribution:
p | X = x ∼ Beta(x + 1, n − x + 1)
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Review of definition: The Beta distribution

θ has a Beta distribution on [0, 1], with parameters α and β, if its density has
the form

π(θ | α, β) =
1

B(α, β)
θα−1(1− θ)β−1

where B(α, β) is the Beta function defined by

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

where Γ(t) is the Gamma function defined by

Γ(t) =

∫ ∞
0

x t−1e−x dx

Recall that for positive integers, Γ(n) = (n − 1)! = 0 · 1 · · · · · (n − 1). See for

example Wikipedia for more properties of the Beta distribution, and the Beta

and Gamma functions. We write π(θ | α, β) = Beta(θ;α, β) for the Beta

density.
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Using a Beta distribution as prior

I Assume the prior is p ∼ Beta(α, β).

I The posterior becomes

p | (X = x) ∼ Beta(α + x , β + n − x)

I DEFINITION: Given a likelihood model π(x | θ). A conjugate family
of priors to this likelihood is a parametric family of distributions so
that if the prior for θ is in this family, the posterior θ | x is also in
the family.
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Using a discrete prior

I What if the prior for p is a discrete distribution, i.e.,
π(p) =

∑k
i=1 I (p = pi )qi?

I The conditional model is obtained with Bayes theorem:

P(p = pi | x) =
π(x | p = pi )qi∑k
i=1 π(x | p = pi )qi

=
pxi (1− pi )

n−xqi∑k
j=1 p

x
j (1− pj)n−xqj

.

I Computationally, you compute the vector of likelihoods, multiply
termwise with the vector (q1, . . . , qk) of prior probabilities, and
normalize to 1.
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Using discretization

I Assume you have ANY prior, with density π(p) on [0, 1]. This
density can be approximated, generally with reasonable accuracy,
with a discrete distribution, a discretization.

I The corresponding posterior produced by discretization can be easily
produced by computer: Compute the likelihood on a grid over p,
compute the prior on the same grid, multiply, and normalize.

I NOTE: This works for ANY likelihood, as long as the parameter p
has a prior distribution on a bounded set.
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Discretizations useful in low dimensions

I The idea above can be extended to any model with 2 parameters, as
long as they have a prior density on a bounded set. We come back
with examples in the next lecture!

I This is an approximation. Accuracy will decrease dramatically when
the number of (discretized) parameters increase beoynd 2 or 3
(why?). Thus discretization is rarely useful when there are more
than 2-3 parameters.
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Prediction

The Bayesian paradigm implies:

I The usefulness of a model lies in its ability to predict.

I We create a joint probability model for the parameters θ, the observed
data x , and data we would like to predict xnew . Often on the form
π(θ, x , xnew ) = π(θ)π(x | θ)π(xnew | θ).

I The distribution for xnew is given by conditioning on the observed x and
marginalizing out θ:

π(xnew | x) =

∫
θ

π(θ, xnew | x) dθ =

∫
θ

π(xnew | θ, x)π(θ | x) dθ

=

∫
θ

π(xnew | θ)π(θ | x) dθ

This is called the posterior predictive distribution.

I It is also possible to look at the predictive distribution for x before it has
been observed. This is called the prior predictive distribution:

π(x) =

∫
θ

π(x , θ) dθ =

∫
θ

π(x | θ)π(θ) dθ
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Example: the Normal-Normal conjugacy

I Assume π(x | θ) = Normal(x ; θ, 1/τ0), where τ0 is a known and
fixed precision.

I Then π(θ | µ, τ) = Normal(θ;µ, 1/τ), where τ is positive and µ has
any real value, is a conjugate family.

I Specifically, we have the posterior

π(θ | x) = Normal

(
θ;
τ0x + τµ

τ0 + τ
,

1

τ0 + τ

)
I PROOF: Use completion of squares.
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PROOF

π(θ | x) ∝θ π(x | θ)π(θ)

∝θ exp
(
−τ0

2
(x − θ)2

)
exp

(
−τ

2
(θ − µ)2

)
= exp

(
−1

2

[
τ0x

2 − 2τ0xθ + τ0θ
2 + τθ2 − 2τθµ+ τµ2

])
∝θ exp

(
−1

2

[
(τ0 + τ)θ2 − 2(τ0x + τµ)θ

])
∝θ exp

(
−1

2
(τ0 + τ)

(
θ − τ0x + τµ

τ0 + τ

)2
)

∝θ Normal

(
θ;
τ0x + τµ

τ0 + τ
,

1

τ0 + τ

)
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