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Example: The Poisson-Gamma conjugacy

I Assume π(x | θ) = Poisson(x ; θ), i.e., that

π(x | θ) = e−θ
θx

x!

I Then π(θ | α, β) = Gamma(θ;α, β) where α, β are positive
parameters, is a conjugate family. Recall that

Gamma(θ;α, β) =
βα

Γ(α)
θα−1 exp(−βθ).

I Specifically, we have the posterior

π(θ | x) = Gamma (θ;α + x , β + 1) .

I Prove this yourself!

I See Albert Section 3.3 for a computational example.
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Example: The Normal-Gamma conjugacy

I Assume π(x | τ) = Normal(x ;µ, 1/τ), so that x is normally
distributed with known mean µ and precision τ . The likelihood
becomes

π(x | τ) =
1√

2π1/τ
exp

(
1

2/τ
(x − µ)2

)
∝τ τ 1/2 exp

(
−1

2
(x − µ)2τ

)
I Then π(τ | α, β) = Gamma(τ ;α, β) is a conjugate family, so that

π(τ | α, β) ∝τ τα−1 exp(−βτ).

I Specifically, we get the posterior below. (Mention noninformative)

π(τ | x) = Gamma

(
τ ;α +

1

2
, β +

1

2
(x − µ)2

)
.

I We can also describe this conjugacy using the variance σ2 and an
inverse Gamma (or inverse Chi-squared) distribution.
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Predictive distributions when using conjugate priors

I When using a conjugate prior, not only do we have an analytic expression
for the posterior density for θ, we also have analytic expressions for the
prior predictive density and the posterior predictive density.

I To see this for the prior predictive density, use this formula derived from
Bayes formula:

π(x) =
π(x | θ)π(θ)

π(θ | x)

The prior predictive density is on the left and all expressions on the right
have analytic formulas.

I Note that, when using the right hand side for computing, θ will necessarily
eventually disappear.

I As the posterior predictive distribution is on the same form as the prior
predictive, we also get an analytic formula for it. Specifically, we can write

π(xnew | x) =
π(xnew | θ)π(θ | x)

π(θ | xnew , x)
.
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Example: Predictive distribution for the Beta-Binomial
conjugacy

I Assume π(x | θ) = Binomial(x ; n, θ) and π(θ) = Beta(θ;α, β).

I We get for the prior predictive

π(x) =
π(x | θ)π(θ)

π(θ | x)

=
Binomial(x ; n, θ) Beta(θ;α, β)

Beta(θ;α + x , β + n − x)

=

(
n
x

)
θx(1− θ)n−xθα−1(1− θ)β−1/B(α, β)

θα+x−1(1− θ)β+n−x−1/B(α + x , β + n − x)

=

(
n
x

)
B(α + x , β + n − x)

B(α, β)

I This is the Beta-Binomial distribution with parameters n, α, and β.
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Example: Predictive distribution for the Normal-Normal
conjugacy

I Assume π(x | θ) = Normal(x ; θ, 1/τ0) and π(θ) = Normal(µ, 1/τ).

I Instead of using the type of computations above, the following is
simpler:

I We know from general theory of the normal distribution that π(x) is
normal.

I E(x) = E(E(x | θ)) = E(θ) = µ.
I Var(x) = Var(E(x | θ)) + E(Var(x | θ)) = Var(θ) + E(1/τ0) =

1/τ + 1/τ0.

I So for the prior predictive we get

π(x) = Normal(x ;µ; 1/τ + 1/τ0)
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Example: Conjugacy for normal normal likelihood, no
parameters known

I Assume X ∼ Normal(µ, 1/τ), with both µ and τ uncertain. The
likelihood becomes

π(x | µ, τ) ∝µ,τ τ 1/2 exp
(
−τ

2
(x − µ)2

)
I Then the Normal-Gamma family is conjugate: The pair (µ, τ) has a

Normal-Gamma distribution with parameters µ0, λ > 0, α > 0, β > 0
if the density has the form

π(µ, τ | µ0, λ, α, β) =
βα
√
λ

Γ(α)
√

2π
τα−1/2 exp

(
−βτ − λτ

2
(µ− µ0)2

)
I Note: If (µ, τ) has the Normal-Gamma distribution above, we have
τ ∼ Gamma(α, β) and µ | τ ∼ Normal(µ0, 1/(λτ)).
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Example: Multinomial-Dirichlet conjugacy

I Assume x = (x1, . . . , xn) ∼ Multinomial(m, θ1, θ2, . . . , θn), with
θ1 + · · ·+ θn = 1, so that xi counts the number of results of type i
in m independent trials, if results of type i have probability θi . The
probability mass function is

π(x | θ1, . . . , θn) =
m!

x1! . . . xk !
θx11 . . . θxnn

I (θ1, . . . , θn) has a Dirichlet distribution with parameters α1, . . . , αn

if the density can be written as

π(θ1, . . . , θn | α1, . . . , αn) =
Γ(α1 + · · ·+ αn)

Γ(α1) . . . Γ(αn)
θα1−1
1 . . . θαn−1

n

I Prove that the Dirichlet family is a conjugate family to the
Multinomial likelhiood!
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Mixtures of conjugate distributions

I Assume we have a model π(x | θ) and a conjugate family of priors
with densities g(θ; γ), where γ ∈ Q. For a fixed integer k > 1 define
a new family of prior densities as consisting of all sums

k∑
i=1

αig(θ; γi )

where αi > 0,
∑k

i=1 αi = 1, and γi ∈ Q. Then, the new family is
also a conjugate family.

I To assemble a proof: First, write fi (x) for the prior predictive density
when using the prior g(θ; γi ). We have shown above that it has an
analytic form. Also, we know that, when using this prior, the
posterior for θ has the form g(θ; γ′i ) for some γ′i ∈ Q. So we can
write π(x | θ)g(θ; γi ) = fi (x)g(θ; γ′i ).
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Mixtures of conjugate distributions, cont.

We can compute the prior predictive as

π(x) =

∫
π(x | θ)

[
k∑

i=1

αig(θ; γi )

]
dθ

=
k∑

i=1

αi

∫
π(x | θ)g(θ; γi ) dθ =

k∑
i=1

αi fi (x)

We get the posterior distribution

π(θ | x) =
π(x | θ)π(θ)

π(x)
=

k∑
i=1

αi

π(x)
π(x | θ)g(θ; γi ) =

k∑
i=1

αi fi (x)

π(x)
g(θ; γ′i )

Thus the posterior has the same forrm as the prior: We have conjugacy.
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Stepwise Bayesian updating

I Assume x = (x1, . . . , xm) is a random sample, so that

π(x | θ) =
m∏
i=1

π(xi | θ)

I Using a prior π(θ) the posterior becomes

π(θ | x) ∝θ

m∏
i=1

π(xi | θ)π(θ)

I If we first update only with the observations x1, . . . , xk , we get the
posterior

π(θ | x1, . . . , xk) ∝θ

k∏
i=1

π(xi | θ)π(θ)

I We see that if we use this as the prior and update with the remaining data
(xk+1, . . . , xm), we get the same result as before.

I In Bayesian statistics, we may subdivide the data into data subsets and
update the model stepwise with the data, as long as all the data sets are
mutually independent given the model parameter θ.
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Model choice / choosing priors

I Model choice is often divided into choosing a likelihood and
choosing a prior distribution for the parameters θ.

I One possibility for setting a prior is to choose one that reflects ”no
knowledge”. Unfortunately, not mathematically clear what this
means; experts are disagreeing. ”Non-informative priors”. An
example: The flat prior in the Normal distribution example above.

I In most examples, there is contextual information and it is
reasonable to use an ”informative prior”. How to determine it?

I Elicit parameters of a prior from ”experts” or yourself, asking what
seems to reflect existing knowledge. (E.g., beta.select in
LearnBayes package)

I Use a posterior given data from another previous source; previous
knowledge is assumed based on those data.

I There are advanced methods for ”model choice” in general (outside
scope of course).
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”Model choice” using weighed models and Bayes Factors

I NOTE: Instead of mixtures of conjugate distributions, one can use
mixtures of any set of priors gi (θ). The prior predictives fi (x) and
the posteriors g ′i (θ) exist, even if they may be difficult to compute.

I We get that the posterior is a mixture of the corresponding
posteriors, with weights updated using the prior predictive values
fi (x) for the data.

I If we have only k = 2 priors, with weights α1 and α2 = 1− α1, and
if we denote the posterior weights α′1 and α′2 = 1− α′1, we get

α′1
1− α′1

=
f1(x)

f2(x)
· α1

1− α1

i.e., the posterior odds α′1/(1− α′1) is equal to the likelihood ratio
f1(x)/f2(x) times the prior odds α1/(1− α1).

I f1(x)/f2(x) is called the Bayes factor.
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Robustness

I Another approach to the choice of prior: Check if switching between
different choices matters for the final result.

I NOTE: For any posterior, there exists a prior that will give this
posterior (assuming nonzero densities).

I Revised question: Do reasonable changes in the prior affect the
result much?

I If not, the prior is called robust for this likelihood.

I Example: See Albert 3.4
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