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Inference using simulation

Monte Carlo Integration

v

v

We want to estimate (compute) an integral (given a r.v. X)

I =Pr(f(X) <a)= /I(f(x) < a)m(x) dx = /g(x)ﬂ'(x) dx = E (g(X))

We want to do it computing an average:
> Simulate xi, ..., xm from m(x).
» Compute

1
= (80x) + -+ + 8(xm))
We can often easily generate lots of data, i.e., m is very large.
We use the Central Limit Theorem, to approximate that, as m — oo,

Iy ~ Normal (/, Var (g(X)) /m)

as long as the first two moments of g(X) exists.
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Inference using simulation

Monte Carlo Integration, cont.

» We can estimate Var(g(X)) with

m

1
~ 2 —
Var(g(X)) = s pa D

=

(st 1)

» With this, we can estimate a 95% confidence interval for | with the
sample variance

Im £ 1.965/y/m
with a similar interpretation as usual.

» A possibility is to compute and plot the estimate and the confidence
interval as a function of m: See Example 3.3 in Robert.

3/16



Inference using simulation

Example: Estimating a proportion

In our main example above, we have g(X) = I(f(X) < «), and we want
to estimate p = E(/(f(X) < ).
> Then
Var(I(f(X) < @) = E(I(f(X) < @) — E(I(f(X) <)) = p— p*.

» Thus the accuracy of estimates is proportional to s = /p(1 — p).

» The accuracy seems to improve when p — 0, but what matters is
the relative accuracy,

Vp(l—p)/p=+/1/p—1

which is bad when p — 0.

» In other words: Estimating a tail quantile from a probability
distribution by counting the number of times sampled values are in
the tail is not very efficient.
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Inference using simulation

Approximating quantiles by simulation

To compute an approximate interval containing, e.g., 90% of the
prrobability for a random variable X:

» Simlulate x, ..., x, from X.
» Order them by size and fiind the 5'th and 95'th empirical percentile.

» In R, use, e.g., quantile(..).
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Simulation of random variables

Simulation from a uniform distribution

» Simulation from Uniform[0, 1] is the basis of all computer based
simulation.

» What does it mean that xq,. .., x, ~ Uniform[0, 1] is "random”? A
possible interpretation: We have no way to predict the coming
numbers; the best guess for their distribution is Uniform[0, 1].

» The computer uses a deterministic function applied to a seed
(" pseudo-random™). The seed can be set (in R with
set.seed(...)) or is taken from the computer clock.

> It should be in practice impossible to apply any kind of visualiation
or compute any kind of statistic which has properties other than
those predicted when the sequence xi, ..., x, is iid Uniform[0, 1].
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Simulation of random variables

Simulating from discrete distributions

» |f X is a random variable on a finite set of real numbers, the
cumulative distribution can be computed in a vector. X can be
simulated by comparing a uniform random variable U to the
numbers in this vector. Example: Binomial distribution.

» If X is a random variable on a countable set of real numbers, one
can describe a finite set that contains approximately all the
probability and do as above. Example: The Poisson distribution.
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Simulation of random variables

The inverse transform

» Let X be a random variable with invertible cumulative distribution
function F(x). If U ~ Uniform[0,1], then F~1(U) is a random
sample from X.

» Note:
P(F~Y(u) < a) = Pr(F(F*(u)) < F()) = Pr(u < F(a)) = F(a)

» Example: The exponential distribution Exp(\) has density
m(X) = Aexp(—xA) and cumulative distribution

F(x) =1 — exp(—Ax)

F(x) = u gives F"}(u) = —1/Xlog(1 — u). As 1 — u is also uniform,
we can simulate with
—1/Xog(u)

8/16



Simulation of random variables

The inverse transform, cont.

» Example: Logistic distribution. Best defined by defining its
cumulative distribution (for standard logistic distribution):

F(x) = 1/(1+ exp(—x))

Easy to invert. The distribution can be adjusted with changing the
mean and the scale, in a standard way.

» Example: Cauchy distribution. Density:
7(x) = 1/(n(1 +x).
The cumulative distribution is
F(x) =1/2 + 1/marctan(x)

Easy to invert.
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Simulation of random variables

Transforming samples

» Example: One can prove that, if Xy,..., X, is a random sample
from Exp(1) then

an:X,- ~ Gamma(n, 8)

i=1

» Example: One can prove that, if Xi,..., X, is a random sample
from Exp(1) then

a
% ~ Beta(a, b).
Z,-:1 Xi
» Example: One can prove that, if Uy, U, is a random sample from
Uniform[0, 1], then

(\/ —2log(Uy) cos(2m Uy), \/Tg(Ul)sin(%rUz))

is a random sample from Normal(0, 1).
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Simulation of random variables

Transformation of random variables

» Recall from basic probability theory: If f(x) is a density function,
and x = h(y) is a monotone transformation, then the density
function for y is

F(h())IH ()]

> If we apply the INVERSE of h on an variable with known density, we
get the density of the resulting variable using the formula above.

» Example application: The non-informative prior for the precision 7
of a Normal distribution is the improper distribution with " density"”
7(7) oc 1/7. We have that 7 = h(0?) = 1/02. We have that, when
h(x) = 1/x, h'(x) = —1/x2. Thus the non-informative prior for the
variance o2 of a normal distribution is given as

1

o2

1

7(0?) o 1752 !

(02)?
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Simulation of random variables

Transformation of multivariate random variables

» If x is a vector, if f(x) is a multivariate density function, and if
x = h(y) is a bijective differentiable transformration, then then
multivariate density function for y is

F(h(y)()l

where |J(y)| is the determinant of the Jacobian matrix for the vector
function h(y).

> One application of this is to prove the identity used above to
simulate from the normal distribution.
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Simulation of random variables

The multivariate normal

» x ~ Normaly(p, X) if
() = gz o0 (50— W) T (= )
m(x)= ——==Fexp| —=(x— X —
2azz TP\ TV T H K
» NOTE: If xq,...,x are i.i.d Normal(0, 1) then
x = (x1,---,Xp)" ~ Normal(0, /).
> If x ~ Normalk(0, /) then Ax ~ Normal(0, AA?).
» THUS: To simulate from Normal(u, ¥):

> Simulate k independent standard normal random variables into a
vector Xx.

» Compute the (lower triangular) Choleski decomposition S of X: We
then have that ¥ = SS*.

» Compute Sx + p: It is multivariate normal, and has the right
expectation and variance matrix.
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Simulation of random variables

Simulating the marginal distribution

> Generally: If you have a sample (x1,y1), (x2, ¥2), ..., (Xn, ¥n) from a
joint distribution of X and Y/, then xi,x», ..., X, is a sample from
the marginal distribution of X.

» Simple application: If 7 ~ Gamma(k/2,1/2) and
x | 7 ~ Normal(0,1/7), then the marginanl distribution of x is a
Student t-distribution with k degrees of freedom. To simulate:

» Draw 7 from Gamma(k/2,1/2).
» Then draw x from Normal(0,1/7).

» Much more generally: To simulate for example from the predictive
distribution for xyew in a Bayesian model, simulate from the joint
distribution with density 7(xnew, 6 | x), where x is the data and 6 is
the parameters. Then take the coordinates of the sample pertaining
to XneEw -
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Simulation of random variables

Rejection sampling

» Sometimes we cannot easily simulate from a density f(x), (the
"target density”) but we can simulate from an "instrumental”
density g(x) that approximates f(x).

» If we can find a constant M such that f(x)/g(x) < M for all x (and
if f and g have the same support), we can use rejection sampling to
sample from f:

> Sample X using g(x).
» Draw u uniformly on [0, 1].

> If u- M < f(x)/g(x) accept x as a sample, otherwise reject x and
start again.
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Simulation of random variables

Rejection sampling, cont.

» NOTE: Applicable in any dimension.
» The acceptance rate is 1/M, so we want to use a small M.

» NOTE: We may in fact do this with 7(x) and g(x) equal to the
densities up to a constant, still a valid method!

» NOTE: When g(x) integrates to 1, the integral of f(x) can be
approximated as the acceptance rate multiplied by M.

» Example: Random variables with log-concave densities can be
simulated with this method.
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