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Monte Carlo Integration

I We want to estimate (compute) an integral (given a r.v. X )

I = Pr(f (X ) ≤ α) =

∫
I (f (x) ≤ α)π(x) dx =

∫
g(x)π(x) dx = E (g(X ))

I We want to do it computing an average:
I Simulate x1, . . . , xm from π(x).
I Compute

Îm =
1

m
(g(x1) + · · · + g(xm))

I We can often easily generate lots of data, i.e., m is very large.

I We use the Central Limit Theorem, to approximate that, as m→∞,

Îm ∼ Normal (I ,Var (g(X )) /m)

as long as the first two moments of g(X ) exists.
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Monte Carlo Integration, cont.

I We can estimate Var(g(X )) with

Var(g(X )) ≈ s2 =
1

m − 1

m∑
i=1

(
g(xi )− Îm

)2
I With this, we can estimate a 95% confidence interval for I with the

sample variance
Îm ± 1.96s/

√
m

with a similar interpretation as usual.

I A possibility is to compute and plot the estimate and the confidence
interval as a function of m: See Example 3.3 in Robert.

3 / 16



Inference using simulation
Simulation of random variables

Example: Estimating a proportion

In our main example above, we have g(X ) = I (f (X ) ≤ α), and we want
to estimate p = E (I (f (X ) ≤ α)).

I Then

Var(I (f (X ) ≤ α)) = E (I (f (X ) ≤ α))− E (I (f (X ) ≤ α))2 = p − p2.

I Thus the accuracy of estimates is proportional to s =
√

p(1− p).

I The accuracy seems to improve when p → 0, but what matters is
the relative accuracy,√

p(1− p)/p =
√

1/p − 1

which is bad when p → 0.

I In other words: Estimating a tail quantile from a probability
distribution by counting the number of times sampled values are in
the tail is not very efficient.
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Approximating quantiles by simulation

To compute an approximate interval containing, e.g., 90% of the
prrobability for a random variable X :

I Simlulate x1, . . . , xn from X .

I Order them by size and fiind the 5’th and 95’th empirical percentile.

I In R, use, e.g., quantile(..).
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Simulation from a uniform distribution

I Simulation from Uniform[0, 1] is the basis of all computer based
simulation.

I What does it mean that x1, . . . , xn ∼ Uniform[0, 1] is ”random”? A
possible interpretation: We have no way to predict the coming
numbers; the best guess for their distribution is Uniform[0, 1].

I The computer uses a deterministic function applied to a seed
(”pseudo-random”). The seed can be set (in R with
set.seed(...)) or is taken from the computer clock.

I It should be in practice impossible to apply any kind of visualiation
or compute any kind of statistic which has properties other than
those predicted when the sequence x1, . . . , xn is iid Uniform[0, 1].
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Simulating from discrete distributions

I If X is a random variable on a finite set of real numbers, the
cumulative distribution can be computed in a vector. X can be
simulated by comparing a uniform random variable U to the
numbers in this vector. Example: Binomial distribution.

I If X is a random variable on a countable set of real numbers, one
can describe a finite set that contains approximately all the
probability and do as above. Example: The Poisson distribution.
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The inverse transform

I Let X be a random variable with invertible cumulative distribution
function F (x). If U ∼ Uniform[0, 1], then F−1(U) is a random
sample from X.

I Note:

P(F−1(u) ≤ α) = Pr(F (F−1(u)) ≤ F (α)) = Pr(u ≤ F (α)) = F (α)

I Example: The exponential distribution Exp(λ) has density
π(X ) = λ exp(−xλ) and cumulative distribution

F (x) = 1− exp(−λx)

F (x) = u gives F−1(u) = −1/λ log(1− u). As 1− u is also uniform,
we can simulate with

−1/λlog(u)
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The inverse transform, cont.

I Example: Logistic distribution. Best defined by defining its
cumulative distribution (for standard logistic distribution):

F (x) = 1/(1 + exp(−x))

Easy to invert. The distribution can be adjusted with changing the
mean and the scale, in a standard way.

I Example: Cauchy distribution. Density:

π(x) = 1/(π(1 + x2)).

The cumulative distribution is

F (x) = 1/2 + 1/π arctan(x)

Easy to invert.
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Transforming samples

I Example: One can prove that, if X1, . . . ,Xn is a random sample
from Exp(1) then

β

n∑
i=1

Xi ∼ Gamma(n, β)

I Example: One can prove that, if X1, . . . ,Xn is a random sample
from Exp(1) then ∑a

i=1 Xi∑a+b
i=1 Xi

∼ Beta(a, b).

I Example: One can prove that, if U1,U2 is a random sample from
Uniform[0, 1], then(√

−2 log(U1) cos(2πU2),
√
−2 log(U1) sin(2πU2)

)
is a random sample from Normal(0, 1).
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Transformation of random variables

I Recall from basic probability theory: If f (x) is a density function,
and x = h(y) is a monotone transformation, then the density
function for y is

f (h(y))|h′(y)|
I If we apply the INVERSE of h on an variable with known density, we

get the density of the resulting variable using the formula above.

I Example application: The non-informative prior for the precision τ
of a Normal distribution is the improper distribution with ”density”
π(τ) ∝ 1/τ . We have that τ = h(σ2) = 1/σ2. We have that, when
h(x) = 1/x , h′(x) = −1/x2. Thus the non-informative prior for the
variance σ2 of a normal distribution is given as

π(σ2) ∝ 1

1/σ2

∣∣∣∣− 1

(σ2)2

∣∣∣∣ =
1

σ2
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Transformation of multivariate random variables

I If x is a vector, if f (x) is a multivariate density function, and if
x = h(y) is a bijective differentiable transformration, then then
multivariate density function for y is

f (h(y))|J(y)|

where |J(y)| is the determinant of the Jacobian matrix for the vector
function h(y).

I One application of this is to prove the identity used above to
simulate from the normal distribution.
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The multivariate normal

I x ∼ Normalk(µ,Σ) if

π(x) =
1

|2πΣ|1/2
exp

(
−1

2
(x − µ)tΣ−1(x − µ)

)
I NOTE: If x1, . . . , xk are i.i.d Normal(0, 1) then

x = (x1, . . . , xn)t ∼ Normalk(0, I ).

I If x ∼ Normalk(0, I ) then Ax ∼ Normal(0,AAt).

I THUS: To simulate from Normal(µ,Σ):
I Simulate k independent standard normal random variables into a

vector x .
I Compute the (lower triangular) Choleski decomposition S of Σ: We

then have that Σ = SS t .
I Compute Sx + µ: It is multivariate normal, and has the right

expectation and variance matrix.
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Simulating the marginal distribution

I Generally: If you have a sample (x1, y1), (x2, y2), . . . , (xn, yn) from a
joint distribution of X and Y , then x1, x2, . . . , xn is a sample from
the marginal distribution of X .

I Simple application: If τ ∼ Gamma(k/2, 1/2) and
x | τ ∼ Normal(0, 1/τ), then the marginanl distribution of x is a
Student t-distribution with k degrees of freedom. To simulate:

I Draw τ from Gamma(k/2, 1/2).
I Then draw x from Normal(0, 1/τ).

I Much more generally: To simulate for example from the predictive
distribution for xNEW in a Bayesian model, simulate from the joint
distribution with density π(xNEW , θ | x), where x is the data and θ is
the parameters. Then take the coordinates of the sample pertaining
to xNEW .
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Rejection sampling

I Sometimes we cannot easily simulate from a density f (x), (the
”target density”) but we can simulate from an ”instrumental”
density g(x) that approximates f (x).

I If we can find a constant M such that f (x)/g(x) ≤ M for all x (and
if f and g have the same support), we can use rejection sampling to
sample from f :

I Sample X using g(x).
I Draw u uniformly on [0, 1].
I If u ·M ≤ f (x)/g(x) accept x as a sample, otherwise reject x and

start again.
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Rejection sampling, cont.

I NOTE: Applicable in any dimension.

I The acceptance rate is 1/M, so we want to use a small M.

I NOTE: We may in fact do this with f (x) and g(x) equal to the
densities up to a constant, still a valid method!

I NOTE: When g(x) integrates to 1, the integral of f (x) can be
approximated as the acceptance rate multiplied by M.

I Example: Random variables with log-concave densities can be
simulated with this method.
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