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Some superficial notes from RC chapter 4 sections 1-3

In the context of Monte Carlo integration using IID samples:

I We have looked at how to obtain a ”confidence band” using
cumulative averages and cumulative computations of the sample
variance. (Example 3.3. Figure 3.3)

I A more stable ”confidence band” can be produced by sampling k
parallell chains. (Example 4.1. Figure 4.1)

I As we often only know the posterior density up to a constant,
computing a posterior expectation may involve computing the
quotient of two approximations of integrals. (Example 4.2). There
are ways to obtain adjusted estimates for the accuracy of the
estimates of such quotients.
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Multivariate normal approximations

It is sometimes useful to consider the following approximation, when we
have a density written

π(θ) ∝θ exp(h(θ))

for some function h. If θ̂ is the mode of the density, the second-degree
Taylor approximation gives

h(θ) ≈ h(θ̂) +
1

2
(θ − θ̂)tH(θ̂)(θ − θ̂)

where H(θ) is the Hessian matrix of second derivatives. We get

exp(h(θ)) ≈ exp(h(θ̂)) exp

(
−1

2
(θ − θ̂)t((−H(θ̂))−1)−1(θ − θ̂)

)
If we integrate both sides with respect to θ (and interpret the local
approximation above as a global approximation), we get that the
integration constant for π(θ) is approximately equal to

exp(h(θ̂))|2π(−H(θ̂))−1|1/2.
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Examples

I Example 6.4: Target density Normal(0, 1), proposal function is the
uniform distribution on [x − δ, x + δ].

I The only parameter in the method is δ.
I We see that too small or too large values for δ gives slow

convergence of the Markov chain.

I Example 6.5: The likelihood is a mixture:

1

4
Normal(µ1, 1) +

3

4
Normal(µ2, 1)

I We simulate 400 data values using µ1 = 0, and µ2 = 2.5.

I With a prior for (µ1, µ2) that is uniform on [−2, 5]× [−2, 5] we get
a posterior density as in Figure 6.8.

I R-code for log-likelihood function on page 128.

I R-code for simulation from posterior on page 184.

I Result very dependent on ”scale” parameter. Can you think of
alternative approaches?
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The Langevin algorithm

I The idea: Use not only the density value at X (t) but also the
gradient of the density at that point to make a smart proposal Y t .

I Concrete proposal function

Y t = X (t) +
σ2

2
∇ log f (X (t)) + σεt

I Nice to implement when formulas for the gradient can be computed
analytically.

I BUT: In many cases, the convergence of the Markov chain is not
improved: (One can get too easily stuck at a mode). Example 6.7.
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Acceptance rates

I In a number of cases, a high acceptance rate gives a better sample.

I Example 6.9: Using a double-exponential independent proposal to
simulate from Normal(0, 1).

I However, maximizing the acceptance rate does not necessarily
improve the sample when you don’t have independent proposals, as
it might also increase the autocorrelation in the sample.

I Example 6.10
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Missing data

I Idea: Simulate the missing data given the parameter, and then
simulate the parameters given the missing data: Gibbs sampling
idea!

I Example: Censored data, for example in survival analysis: We want
to learn about density f (· | θ) from sample where x1, . . . , xk are
observed values and c1, . . . , cn are observations that the
corresponding xi is greater than some ai . The likelihood becomes

π(x1, . . . , xk , c1, . . . , cn | θ) =
k∏

i=1

f (xi | θ)
n∏

i=1

(1− F (ai | θ))

where F (· | θ) is the cumulative density.

I Simulating alternatively the missing data and distribution for the
parameters given all data may be easier than dealing with the
likelihood above.

I Example 7.6: A Normal(θ, 1) model with data truncated at a.
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Augmented data

(or latent variables)

I Idea: Sometimes the model had been much simpler to handle if we
had observed certain parameters. So: Pretend that these are missing
data!

I Example 7.7: The model is the multinomial distribution

M4(n;
1

2
+
θ

4
,

1

4
(1− θ),

1

4
(1− θ),

θ

4
)

I The likelihood for θ is not easy to deal with.

I We extend the data (x1, x2, x3, x4) with a latent variable z , so that

(x1 − z , z , x2, x3, x4) ∼M5(n;
1

2
,
θ

4
,

1

4
(1− θ),

1

4
(1− θ),

θ

4
)

I What is the posterior probability of θ given the extended data and a
Beta prior?

I What is the conditional probability of z given θ and the actual data?
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Mixture models

I Assume likelihood has form

π(x1, . . . , xn | θ) =
n∏

i=1

k∑
j=1

pj f (xi | ξj)

where θ = (ξ1, . . . , ξk) are the parameters.

I Improved model: Add latent variables Z = (Z1, . . . ,Zn), where
Zi = j indicates the distribution xi comes from:

xi | zi ∼ f (xi | ξzi ) and zi | Multinomial(p1, . . . , pk)

I The full conditional π(Zi | xi , θ) can be computed as the
probabilities that xi belongs to the various distributions f (xi | ξj),
when the parameters θ are given: P(Zi = j | x , θ) ∝ pj f (xi | ξj).

I The full conditional π(θ | x1, . . . , xn,Z1, . . . ,Zn) can be much easier
to handle than the original likelihood: No sums occur.
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