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1. (a)

π(θ | x) ∝ π(x | θ)π(θ) =
1
θ

I[0 ≤ x ≤ θ]
1
θ2 I[1 ≤ θ] =

1
θ3 I[max(1, x) ≤ θ]

We can read off this equation that the posterior is a Pareto(max(1, x), 2) distribution.

(b) If the prior is Pareto(M, α), we get

π(θ | x) ∝ π(x | θ)π(θ) =
1
θ

I[0 ≤ x ≤ θ]
1
θα+1 I[M ≤ θ] =

1
θα+2 I[max(x,M) ≤ θ]

so the posterior is Pareto(max(x,M), α+ 1). As the posterior is in the same family as
the prior, this family is conjugate.

(c)

π(x) =
π(x | θ)π(θ)
π(θ | x)

=

1
θ
I[0 ≤ x ≤ θ] 1

θ2 I[1 ≤ θ]

2 max(1, x)2 1
θ3 I[max(1, x) ≤ θ]

=

{
1/2 if 0 ≤ x ≤ 1

1/(2x2) ifx > 1

2. (a) The Cauchy distribution has a simple expression for the cumulative distribution func-
tion F given in the appendix. Writing u = F(x) and solving for x gives

x = µ + γ tan
(
π

(
u −

1
2

))
= 3 + tan

(
π

(
U −

1
2

))
So the algorithm simulates u from Uniform[0, 1] and transforms the output with the
equation above.

(b) The probability of observing values above, say, 20, from a Poisson distribution with
intensity 2.9 will be completely ignorable. Thus, an algorithm computes the values

pk = exp(−2.9)
2.9k

k!

for k = 0, . . . , 20 and then simulates from the discrete distribution with possible
values 0, . . . , 20 and probabilities p0, . . . , p20.

(c) As the exponential distribution has a cumulative distribution function F given in the
appendix, we may write u = F(x) and solve for x to get

x = −
1
3

log(1 − u).



Using the relation u = F(x) we get that x > 10 corresponds to 1 − u < exp(−30).
So writing u0 for another Uniform[0, 1] variable and (1 − u) = e−30u0, an algorithm
consists of simulating u0, and then computing

x = −
1
3

log(e−30u0) = 10 −
1
3

log(u0)

Indeed, an alternative approach is to use the properties of the Exponential distribuiton
to see directly that simulating from Exponential(3) and then adding 10 is a valid
algorithm.

3. (a)

π(y1, . . . , yn, c1, . . . , cn, λ1, . . . , λn, α, β)

∝

n∏
i=1

[(
I[yi = ci]I[ci < 3] + I[yi = "many"]I[ci ≥ 3]

)
e−λi

λci
i

ci!
βα

Γ(α)
λα−1

i exp(−βλi)
]

(b) We go through all the groups of variables below:

• When all variables except the yi are fixed, these can be computed from the ci,
setting yi = ci when ci < 3 and yi = "many" otherwise.
• When all variables except the ci are fixed, there are two cases: If yi , "many",

we compute ci = yi. If yi = "many", we get from (a) that

π(ci | . . . ) ∝ I[ci ≥ 3]e−λi
λci

i

ci!

In other words, ci has a Poisson distribution with parameter λi, truncated with
I[ci ≥ 3].

• When all variables except the λi are fixed, we get from (a) that

π(λi | . . . ) ∝ λ
α+ci−1
i exp(−(β + 1)λi)

so λi has a Gamma(α + ci, β + 1) distribution.
• When all variables except α are fixed, we get from (a) that

π(α | . . . ) ∝
(
βα

Γ(α)

)n  n∏
i=1

λi

α−1

• When all variables except β are fixed, we get from (a) that

π(β | . . . ) ∝ βnα exp

−β n∑
i=1

λi


Thus β has a Gamma

(
nα + 1,

∑n
i=1 λi

)
distribution.



(c) • For the ci, which have a Poisson distribution with parameter λi truncated with
I[ci ≥ 3]: When λi is high, it may be simplest to simulate from this distribution
using rejection sampling, throwing away samples that are less than 3. When λi

is low, it may be easiest to compute explicitly the probabilities for observing
each ci ≥ 3 up to some cutoff, and then simulate from the resulting discrete
distribution.
• For the α, the conditional distribution given in (b) can be re-written as

π(α | . . . ) ∝
1

Γ(α)n

β n∏
i=1

λi

α
Many alternative simulation methods are possible, and it is easier to select be-
tween them if one can first explore the function above numerically. However,
even without that, one may notice that the presence of the factor 1/Γ(α)n means
the function will approach zero very quickly when α increases, so it can easily
be dominated by instrumental distributions with thicker tails. One alternative is
to numerically find the α maximizing the function, and use this to select an in-
strumental density, for example a normal or a Gamma density, in either rejection
sampling or possibly sampling importance resampling. As the function goes so
fast to zero when α increases, an alternative is to find a reasonable cutoff and then
simulate with a numerical approximation, for example a grid, on the interval up
to this cutoff.

(d) A short outline of the EM algorithm is an acceptable answer, but here is a more
detailed description of the EM algorithm for this situation: First, we notice that the
distributions ci | λi and λi | α, β are conjugate. This means that the distribution
ci | α, β has an analytic form, which we can find as follows:

π(ci | α, β) =
π(ci | λi)π(λi | α, β)
π(λi | ci, α, β)

=
exp(−λi)

λ
ci
i

ci!
βα

Γ(α)λ
α−1
i exp(−λiβ)

(β+1)α+ci

Γ(α+ci)
λα+ci−1

i exp(−λi(β + 1))

=
Γ(α + ci)
Γ(α)ci!

·
βα

(β + 1)α+ci

=

(
ci + α − 1

ci

) (
β

β + 1

)α (
1

β + 1

)ci

This can be recognized as a Negative Binomial distribution for ci with parameters
r = α and p = 1/(β + 1). Thus we can represent our model as having parameters
θ = (α, β), with a flat prior, and that the complete data c1, . . . , cn is a set of independent
observations from a Negative Binomial distribution with parameters r = α and p =

1/(β + 1). The reduced data is y1, . . . , yn.



In the EM algorithm we consider the logarithm of the complete data likelihood:

log (π(c1, . . . , cn | α, β))

= log

 n∏
i=1

(
ci + α − 1

ci

) (
β

β + 1

)α (
1

β + 1

)ci


=

n∑
i=1

[
`Γ(ci + α) − `Γ(α) − `Γ(ci − 1) − ci log(β + 1) + α log(β/(β + 1))

]
= n

(
α log(β/(β + 1)) − `Γ(α)

)
+

n∑
i=1

[
`Γ(ci + α) − `Γ(ci − 1) − ci log(β + 1)

]
where `Γ is the logarithm of the Γ function. The Q(θ | θ′) of the E-step of the EM
algorith consists of computing

Q(θ | θ′)
= E

[
log(π(c1, . . . , cn | α, β)) | y1, . . . , yn

]
= n

(
α log(β/(β + 1)) − `Γ(α)

)
+

n∑
i=1

E
[
`Γ(ci + α) − `Γ(ci − 1) − ci log(β + 1) | yi

]
where we take the expectation for each ci over its distribution given parameters θ′ =

(α′, β′), conditional on yi. Let pi j = Pr(ci = j) under this distribution: For those i
such that yi , "many" we get that pi j = 1 for j = yi and pi j = 0 otherwise. For those
i where yi = "many", pi j is the probability of j in the Negative Binomial distribution
with parameters α′ and 1/(β′ + 1) truncated to have 3 or more observations. We then
get

Q(θ | θ′)
= n

(
α log(β/(β + 1)) − `Γ(α)

)
+

n∑
i=1

∞∑
j=1

pi j
[
`Γ( j + α) − `Γ( j − 1) − j log(β + 1)

]
≈ n

(
α log(β/(β + 1)) − `Γ(α)

)
+

J∑
j=1

p j
[
`Γ( j + α) − `Γ( j − 1) − j log(β + 1)

]
where p j =

∑n
i=1 pi j and where we in the last step disregard the terms for which the

p j are very small.
We may now move on to the M-step of the algorithm, where the expression above is
maximized over θ = (α, β), which in our case can be done numerically.

4. (a) We are given a function f (x) which is proportional to the density we would like to
simulate from. We also use a proposal density q(y | x) which it must be possible to
simulate from given an x. The Metropolis Hastings algorithm starts with generating
some starting value x0. Then, for i = 1, 2, . . . ,



• Simulate a new proposed value y using the density q(y | xi−1).
• Compute the acceptance probability

p(y, xi−1) = min
(
1,

f (y)q(xi−1 | y)
f (xi−1)q(y | xi−1)

)
• Set xi equal to y with probability p(y, xi−1), otherwise equal to xi−1.

(b) The Kernel function K(y | x) of a Markov chain x0, . . . , xi, xi+1, . . . , is the conditional
probability of y = xi+1 given x = xi. The Markov chain satisfies the detailed balance
condition relative to a density f if it satisfies

f (x)K(y | x) = f (y)K(x | y)

for all x and y.
(c) Taking the integral over x of the equation above, we get∫

f (x)K(y | x) dx =

∫
f (y)K(x | y) dx = f (y)

This means that, if xi is distributed according to f , then xi+1 will also be distributed
according to f , so f is a stationary distribution.

(d) Assume x is the value of the Metropolis Hastings chain at step i, let K(y | y) be
the Kernel function defined by the MH algorithm, and let q(y | x) be the proposal
density. Assume y is the proposed value, and assume first the acceptance probability
p(y, x) < 1. Then

f (x)K(y | x) = f (x)q(y | x)p(y, x) = f (x)q(y | x)
f (y)q(x | y)
f (x)q(y | x)

= f (y)q(x | y)

= f (y)K(x | y)

The last step is true because p(x, y) = 1/p(y, x) > 1. Clearly, by symmetry, we also
get the detalied balance condition when p(y, x) > 1.

5. (a) Defining

y1 | x ∼ Uniform(0, exp(−x2.3))
y2 | x ∼ Uniform(0, exp(−x1.3))
y3 | x ∼ Uniform(0, 1/(1 + x3))

leads to the joint density

π(x, y1, y2, y3) = π(x)π(y1 | x)π(y2 | x)π(y3 | x)

= exp(−x2.3) · exp(−x1.3) ·
1

1 + x3

·
I[0 ≤ y1 ≤ exp(−x2.3)]

exp(−x2.3)
·

I[0 ≤ y2 ≤ exp(−x2.3)]
exp(−x2.3)

·
I[0 ≤ y3 ≤ 1/(1 + x3)]

1/(1 + x3)
= I[0 ≤ y1 ≤ exp(−x2.3)] · I[0 ≤ y2 ≤ exp(−x2.3)] · I[0 ≤ y3 ≤ 1/(1 + x3)]



(b) The slice sampler is a Gibbs sampler simulating from the conditional distributions
of the four variables. The conditional distributions of y1, y2, and y3 are uniform and
given directly above. For x we get

π(x | y1, y2, y3)
∝ I[0 ≤ x ≤ (− log(y1))1/2.3] · I[0 ≤ x ≤ (− log(y2))1/1.3] · I[0 ≤ x ≤ (1/y3 − 1)1/3]
∝ I

[
0 ≤ x ≤ min

(
(− log(y1))1/2.3, (− log(y2))1/1.3, (1/y3 − 1)1/3

)]
which indicates the uniform distribution to simulate from.

6. (a) As | sin(14x)| ≤ 1 and | cos(19x)| ≤ 1 for any x, we get that | sin(14x) + cos(19x)| ≤ 2
and

f0(x) = (sin(14x) + cos(19x))2 ≤ 4

for any x. Thus if g denotes the uniform density on the interval [0, 1], we have

4g(x) ≥ f0(x)

for all x, and g should be a reasonable instrumental function.

(b) The algorithm is

• Simulate x ∼ Uniform(0, 1).
• Simulate u ∼ Uniform(0, 1).
• If u < 1

4 f0(x) then accept x, otherwise reject x and start over.

(c) If we store the acceptance rate R from the algorithm above, we get

R ≈ Pr
(
u <

1
4

f0(x)
)

= E
(
1
4

f0(x)
)

=
1
4

∫ 1

0
f0(x) dx =

1
4C

∫ 1

0
π(x) dx =

1
4C

Thus we estimate
C ≈

1
4R
.

One may also take the average of the computed values f0(x) for all the simulated x
above, to obtain a Monte Carlo estimate for

∫ 1

0
f0(x) dx, and from that an estimate for

C.

7. There is a problem with the simulation, as it is often "stuck" at the same value in large
periods. This is a problem as the simulated sample then approximates badly the target
density, in particular in the regions where it seems to become stuck.

The simulation seems to get stuck for low values, around the interval [−1, 0], while it is
not stuck in the interval around [2, 4]. If we denote by f (x) the target density and g(x)
the proposal density used in the independent proposals, the plot indicates that f (x)/g(x)
is much higher than 1 in the region around [−1, 0], and much lower than 1 in the region
around [2, 4]. To improve the simulation, the proposal density g should be adjusted so that
the quotient becomes closer to 1 in both regions.


