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1. A random number is a mathematical concept whereas a pseudo-random number is a num-
ber generated by a computer in such a way that it appears to have the properties of a
random number in the contexts we investigate. In other words, although a sequence of
pseudo-random numbers is completely deterministic, looking at the numbers or functions
of them, one should not be able to detect any correlations or patterns.

2. (a) The cumulative dennsity function of a Logistic(−1, 1) distribution is

F(x) =
1

1 + exp (−(x + 1))

Inverting this function gives

F−1(u) = −1 − log
(
u−1 − 1

)
and thus with U ∼ Uniform(0, 1), F−1(U) is a sample from Logistic(−1, 1).

(b) First compute, for i = 0, 1, . . . , 12,

ci =

i∑
j=0

(
12
j

)
0.42 j0.5812− j.

Then simulate U ∼ Uniform(0, 1) and set

k = min
k

ck ≥ U.

(c) One possibility is to use rejection sampling: The density of a Beta(4.5, 9.2) distribu-
tion is given by (0 ≤ x ≤ 1)

f (x) =
Γ(4.5 + 9.2)
Γ(4.5)Γ(9.2)

x4.5−1(1 − x)9.2−1

and attains it maximum at the distribution mode

m =
4.5 − 1

4.5 + 9.2 − 2

so this maximum can be computed as M = f (m). To use rejection sampling, sample
U ∼ Uniform(0, 1), and accept it with the probability f (u)/M.



3. (a) A Gibbs sampling would in essence iterate between simulating from the conditional
distribution of x given y, and the conditional distribution of y given x. First of all,
these conditional distributions are very difficult to handle and to simulate from in this
case. Secondly, even if one manages to simulate from them, the resulting Markov
Chain would be badly behaved, as x and y are highly correlated, as indicated in the
figure.

(b) A first step would be to do a variable transformation, substituting u = x + y and
v = x − y. As this is a linear transformation it would change the density only with a
constant, which can be ignored as we know the density only up to a constant.
The new density function

g(u, v) =
1

(|u|/10 + 1)4 · (|v| + 0.1)2 · e−7|u|

separates into a product of functions of u and v, so these can be simulated indepen-
dently.
Because of symmetry, it is clear that we may simulate from the density proportional
to

h(u) =
1

(u/10 + 1)4

for u > 0 and the density proportional to

k(v) = (v + 0.1)2 exp(−7v)

for v > 0, annd then choose the signs randomly. Again we may make linear transfor-
mations w = u/10 + 1 and s = u + 0.1 to obtain the functions

A(w) = w−4

for w > 1 and
B(s) = s2 exp(−7s)

for s > 0.1. For the first function, the cumulative distribution can be computed
explicitly and used for simulation. For the second function, it is proportional to a
Gamma density, so one may simulate from it by simulating from a Gamma density
with parameters 3 and 7, and throwing away results below 0.1.

4. Let X denote a random variable with density π(x) on [a, b]. Provided that E
[
g(X)

]
exists,

we may write I as I = E
[
g(X)

]
and the Central Limit Theorem tells us that

Î =
1
n

n∑
i=1

g(xi) ∼ Normal(I, σ2/n)

provided we assume σ2 = Var
[
g(X)

]
exists. Making these assumptions, we get that Î as

defined above is an estimate for I, and that an approximate 95% confidence interval is
given by

Î ± 1.96 · σ̂/
√

n

where σ̂2 is the sample variance computed from g(x1), g(x2), . . . , g(xn).



5. Importance sampling is a method to improve the accuracy in the evaluation of integrals of
the form

Eπ (h(X)) =

∫
h(x)π(x) dx

where π(x) is some density function. Specifically, one assumes there is an instrumental
density g(x) which is strictly positive whenever h(x)π(x) is positive, and write

Eπ (h(X)) =

∫
h(x)π(x) dx =

∫
h(x)π(x)

g(x)
g(x) dx ≈

1
n

n∑
i=1

h(xi)π(xi)
g(xi)

where x1, . . . , xn is a sample from the distribution whose density is g(x). Using the Central
Limit Theorem, we see that the approximation is better than the approximation 1/n

∑n
i=1 h(yi)

(where y1, . . . , yn is a sample from the distribution with density π(x)) if

Var
[
h(X)π(X)

g(X)

]
< Var [h(Y)] .

Thus, generally, h(x)π(x)
g(x) should be as stable as possible. Note that it needs to be practical to

simulate from the density g(x); when it is easier to simulate from g(x) than from π(x) it is
another advantage of importance sampling.

6. (a) We get for the posterior

π(p | x) ∝p π(x | p)π(p) ∝p px(1 − p)n−x

which is proportional to a Beta(x+1, n− x+1) distribution. The posterior expectation
is, from the properties of the Beta distribution,

E
[
p | x

]
=

x + 1
n − x + 1 + x + 1

=
x + 1
n + 2

while the maximum likelihood estimate for p is x
n .

(b) We have for the predictive distribution

π(y | x) =
π(y | p)π(p | x)
π(p | x, y)

=
Binomial(y; m, p) · Beta(p; x + 1, n − x + 1)

Beta(p; x + y + 1, n + m − x − y + 1)

=

(
m
y

)
py(1 − p)m−y Γ(n+2)

Γ(x+1)Γ(n−x+1) px(1 − p)n−x

Γ(n+m+2)
Γ(x+y+1)Γ(n+m−x−y+1) px+y(1 − p)n+m−x−y

=

(
m
y

)
Γ(n + 2)Γ(x + y + 1)Γ(n + m − x − y + 1)

Γ(x + 1)Γ(n − x + 1)Γ(n + m + 2)



(c) We get E
[
y
]

= E
[
E

[
y | x

]]
= E

[
mp | x

]
= m x+1

n+2 , and also

Var
[
y
]

= Var
[
E

[
y | x

]]
+ E

[
Var

[
y | x

]]
= Var

[
mp | x

]
+ E

[
mp(1 − p) | x

]
= m2 Var

[
p | x

]
+ mE

[
p | x

]
− mE

[
p2 | x

]
= m2 Var

[
p | x

]
+ mE

[
p | x

]
− m Var

[
p | x

]
+ mE

[
p | x

]2

= (m2 − m)
(x + 1)(n + 1 − x)

(n + 2)2(n + 3)
+ m

x + 1
n + 2

− m
(

x + 1
n + 2

)2

7. (a) We get

L(θ) = log (π (X0, X1, X2,Z | µ0, µ1, p))

= log
[

1
√

2π
exp

(
−

1
2

(X0 − µ0)2
)

1
√

2π
exp

(
−

1
2

(X1 − µ1)2
)

1
√

2π
exp

(
−

1
2

(X2 − µZ)2
)

pZ(1 − p)1−Z

]
= C −

1
2

(X0 − µ0)2
−

1
2

(X1 − µ1)2
−

1
2

(X2 − µZ)2 + Z log(p) + (1 − Z) log(1 − p)

(b) We get

z′ = Pr
[
Z = 1 | X2, θ

′]
=

Pr [X2 | Z = 1, θ′] Pr [Z = 1 | θ′]
Pr [X2 | Z = 1, θ′] Pr [Z = 1 | θ′] + Pr [X2 | Z = 0, θ′] Pr [Z = 0 | θ′]

=

1
√

2π
exp

(
−1

2

(
X2 − µ

′
1

)2
)

p′

1
√

2π
exp

(
−1

2

(
X2 − µ

′
1

)2
)

p′ + 1
√

2π
exp

(
−1

2

(
X2 − µ

′
0

)2
)

(1 − p′)

=
1

1 + exp
(
−1

2

(
X2 − µ

′
0

)2
+ 1

2

(
X2 − µ

′
1

)2
) (

1
p′ − 1

)
(c) As Z is a binary 0/1 variable, the posterior probability that Z = 1 is equal to its

expectation given fixed θ′ and Z2. Thus

Q(θ, θ′) = E
[
L(θ) | θ′

]
= −

1
2

(X0 − µ0)2
−

1
2

(X1 − µ1)2
− E

[
1
2

(X2 − µZ)2
| θ′

]
+E [Z] log(p) + (1 − E [Z]) log(1 − p)

= −
1
2

(X0 − µ0)2
−

1
2

(X1 − µ1)2
−

z′

2
(X2 − µ1)2

−
1 − z′

2
(X2 − µ0)2

+z′ log(p) + (1 − z′) log(1 − p)



(d) Setting ∂Q
∂p = 0 gives us directly that the maximizing value for p is p̂ = z′. Setting

∂Q
∂µ1

= 0 gives us (X1 − µ1) + z′(X2 − µ1) = 0 and thus µ̂1 = X1+z′X2
1+z′ . Correspondingly

we get µ̂0 =
X0+(1−z′)X2

1+1−z′ .

8. (a) Assume you have a random sample x1, . . . , xn from a probability distribution with
density π, and a statistic θ, computing from a sample y1, . . . , ym some value θ(y1, . . . , ym).
The idea of Bootstrapping is to approximate the properties of the statistic by studying
the properties of θ applied to samples from the discrete distribution wich assignes the
probability 1/n to each of the values xi.

(b) For j = 1, . . . ,N, for some large number N, resample with replacement sequences

(x1 j, y1 j), (x2 j, y2 j), . . . , (xn j, yn j)

from the original pairs (x1, y1), . . . , (xn, yn). For each sequence, compute ρ̂ j in the
same way as ρ̂ is computed from (x1, y1), . . . , (xn, yn). Now, compute a Bootstrap
estimate for the standard error of ρ̂ as√√√

1
N − 1

N∑
j=1

(
ρ̂ j − ρ̂

)2

where ρ̂ is the averate of the ρ̂ j’s.


