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1. The first statement is used within frequentist statistics. Its interpretation is as follows:
There are statistics L; and L, defined in terms of a sample x}, ..., x; from a normal distri-
bution with expectation # and variance 1, such that the stochastic interval [L;, L,] contains
6 with 95% probability; the values of these statistics computed on the given datais L; = 2.3
and L, = 2.5.

The second statement is used within Bayesian statistics. Its interpretation is as follows:
With some prior on 8 (not specified in the question), the posterior probability that 6 is in
the interval [2.3,2.5] is 95%.

2. (a) If p ~ Beta(a,p) and x | p ~ Neg-Bin(r, p), then
m(p | x) «c, w(x | p)n(p) o<, (1 = p) p*p* (1= pyf~' = p*™'(1 - pyf*.

Thus p | x ~ Beta(a + x, 8 + r), and the Beta family of distributions is conjugate to to
the Negative Binomial distribution for the p parameter.
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(c) The posterrior predictive is the same as the prior predictive using the posterior given
x as the prior when predicting xygw. Using (a), we get in our case that

p | x ~ Beta(a + x,8 +r) = Beta(2 + 1, 1 + 2) = Beta(3, 3)

and using (b) we then get
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3.

(d) Let C be a varriable such that C = 1 means model 1 is used and C = 2 means model 2
is used. The Bayes factor B is equal to the likelihood ratio w(x | C = 1)/n(x | C = 2).
Thus it is equal to the ratio of the corresponding prior predictive distributions:
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(e) We have, apriori, that 7(C = 1) = n(C = 2) = 0.5. The posterior probabilities for the
two models can be computed using Bayes formula on odds form, i.e.,
a(C=1]|x) —B-ﬂ(C:D
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which solves to 7(C = 1 | x) = B/(1 + B). Using the posterior for each model
computed in (a), the posterior probability density for p given x is
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(a) The cumulative density for an Exponential distribution with parameter 2.7 is, for
x>0,
F(x) =1 —exp(=2.7x).

Writing U = F(x), we get x = —log(l — U)/2.7. Thus, we may simulate from the
distribution by first simulating U’ uniformly on the interval [0, 1], and then computing
x =—log(U")/2.7.

(b) Simulation may be done in several ways; one option is to simulate x from a Gamma
distribution with parameters @ = 2.7 and § = 9.1 and output 1/x. The Gamma
distribution has density
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and it is possible to simulate from it using rejection sampling. Differentiation shows
that this density has its maximum at (@ — 1)/8 = 1.7/9.1 = 0.1868132, where the
density is then 2.652551. But we can also use the identity log(x) < x — 1 to show that
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m(x) = Flfoz) exp(—=Bx + (o — 1)log(x)) < @) exp(=Bx + (¢ — 1)(x - 1))

= 45.94846 - exp(—=7.4x) < 6.21 - 7.4 exp(-7.4x)

when we use that « = 2.7 and 8 = 9.1. Thus a simple solution is to use rejection
sampling with an exponential distribution with parameter 7.4 as a proposal distribu-
tion, and M = 6.21. (More efficient simulation solutions exist, for example by using
a different proposal density for small x).



(c) We can recognize this density as a mixture of normal densities:

7
n(x) = > w;Normal(x; u;, 1)
i=1
where Normal(x; u;, 1) denotes the value in x of the normal density with expectation
u; and variance 1. To simulate from this density, simulate first an index i according to
the probabilities wy, ..., w;. This can be done by simulating U uniforrmly on [0, 1]
and finding the smallest i such that wy +---+w; > U. Then, if gb‘l is the inverse of the

cumulative distribution function for the standard normal distribution, we may output
67 (V) +u,
where V' is uniformly simulated on [0, 1].

4. (a) A Bayesian Network is a Directed Acyclic Graph (DAG), for each node i in the
network a variable x;, and for each such node a conditional probability density m(x; |
Xj,...,Xj), where ji,..., ji are the indices of the parents of node i in the DAG.
The product of these conditional probability densities represents the joint probability
density for the network.

(b) A Markov Network is an undirected graph, for each node i in the network a variable
x;, and for each set of nodes with indices ji, ..., ji such that all nodes in the set are
connected in the graph a nonnegative function ¢(x;, ..., x;,). The product of all the
factors represents the (unnormalized) probability density of the network.

(c) If the value x; of a node i is observed in a Bayesian network, the probability den-
sity for the remaining nodes is obtained as the conditional density given x;. If the
value of node i is set by infervention in a causal network with the same structure, the
probability density for the remaining nodes is obtained by first removing the condi-
tional density n(x; | x;j,,...,x;) in the product of conditional densities representing
the Bayesian network, before conditioning on the value x; in the remaining product.

(d) Two nodes i and j are connected in the Markov graph if and only if 7;; # 0, where 7;;
is the value in the i’th row and j’th column of the precision matrix.

5. If an integral is written as I = f f(x)g(x)dx with g(x) being a probability density, then
Monte Carlo integration means making the approximation

I=E[f0] = ff(X)g(JC)dxz %;f(xi) =1

where xi,..., x, is a sample from the density g(x). As long as f(x) has finite variance o
when x is distributed according to g(x), the Central Limit Theorem tells us that, for large
n, and assuming the sample is a random sample, we have approximately

I ~ Normal (Eg [f(0)], 0'2/n)

and this can be used to obtain approximate estimates for / — I.



6. (a) The posterior density for the model can be written as
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Taking the logarithm and removing additive terms not depending on @, 5, or Ay, . .., Ay,

we get the log posterior
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(b) Given a function f(6,,...,6,) proportional to a joint density for the parameters 6 =
(61,...,6,), assume you can derive and simulate from each of the conditional distri-
butions 7w(x; | X1,...,Xi—1, Xi+15 ..., X), for i = 1,...,n. Then Gibbs sampling entails
first simulating a vector of parameters ' from some distribution, followed by, for
each ¢, updating 8 to 67+ by sequentially simulating from the conditional distribu-
tions mentioned above, using updated values for the remaining parameters each time.
This can be seen as a version of the Metropolis Hastings algorithm, and thus, un-
der general conditions, the distribution of #” will approach the original joint density
when t — co.

(c) In the model above, we see from the loglikelihood of question (a) that, for i =
1,...,k,
/l,' | (Y,,B,Cil, vy Cig ™~ Gamma(a + Z C,‘j,ﬂ + S]
j=1
while

k
Blady,...,4 ~ Gamma(S +ka,2+Z/li)
i=1

For a we get

k
m(a | B, A, .., Ag) o< exp ((k log(B) + Z log(/li)] a— klog(F(a))]
i=1

This can be simulated from using for example rejection sampling.

7. (a) The simplest (but not by a long shot the most efficient) alternative would be to use as
proposal density g a uniform distribution on the interval [—15, 35]. Its density on this



(b)

(c)

(d)

interval would be 1/50 = 0.02, and so we can see from the figure that choosing for
example M =7, we get Mg(x) > f(x), where f(x) is the target density. For each itera-
tion, the algorithm would simulate x ~ Uniform[—-15,35] and U ~ Uniform[0, 0.14],
and would then reject x unless U < f(x).

The simplest possiblity would again be to use a uniform distribution on [-15, 35]
as proposal function. The main difference with (a) would be that the chain would
contain a number of repeated values; it would "get stuck" for a while at values cor-
responding to the peaks in the figure. However, one may also use a more tailored
proposal function, for example a mixture of three normals, with expectations -6, 6,
and 11, respectively, and with respective standard deviations 1, 1, and 4, for example.

With a random walk Metropolis Hastings, you would like the Markov chain to be
able to jump from one area of high density to another, i.e., occationally it should
jump a length around 8. Thus a normal distribution with standard deviation 4 could
be suitable.

If you rescale the proposal function to a much smaller variance, there is a danger that
the Markov chain would get stuck in one of the areas of high density for a very long
time, as a chain passing the areas of low density would be unlikely. If ou rescale to a
much larger variance, one would get the problem that the proposed values would very
rarely be accepted, and the chain would be stuck at a single value for that reason.



