Petter Mostad
Applied Mathematics and Statistics
Chalmers

Suggested solutions for MSA100 / MVE186 Computer Intensive Statistical Methods Re-exam 5 June 2017

1. The first statement is used within frequentist statistics. Its interpretation is as follows: There are statistics L_{1} and L_{2} defined in terms of a sample $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ from a normal distribution with expectation θ and variance 1 , such that the stochastic interval $\left[L_{1}, L_{2}\right]$ contains θ with 95% probability; the values of these statistics computed on the given data is $L_{1}=2.3$ and $L_{2}=2.5$.

The second statement is used within Bayesian statistics. Its interpretation is as follows: With some prior on θ (not specified in the question), the posterior probability that θ is in the interval $[2.3,2.5]$ is 95%.
2. (a) If $p \sim \operatorname{Beta}(\alpha, \beta)$ and $x \mid p \sim \operatorname{Neg}-\operatorname{Bin}(r, p)$, then

$$
\pi(p \mid x) \propto_{p} \pi(x \mid p) \pi(p) \propto_{p}(1-p)^{r} p^{x} p^{\alpha-1}(1-p)^{\beta-1}=p^{\alpha+x-1}(1-p)^{\beta+r-1} .
$$

Thus $p \mid x \sim \operatorname{Beta}(\alpha+x, \beta+r)$, and the Beta family of distributions is conjugate to to the Negative Binomial distribution for the p parameter.
(b) We get

$$
\begin{aligned}
\pi(x) & =\frac{\pi(x \mid p) \pi(p)}{\pi(p \mid x)}=\frac{\binom{x+r-1}{x}(1-p)^{r} p^{x} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}}{\frac{\Gamma(\alpha+x+\beta+r)}{\Gamma(\alpha+x) \Gamma(\beta+r)} p^{\alpha+x-1}(1-p)^{\beta+r-1}} \\
& =\binom{x+r-1}{x} \frac{\Gamma(\alpha+\beta) \Gamma(\alpha+x) \Gamma(\beta+r)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\alpha+x+\beta+r)}
\end{aligned}
$$

(c) The posterrior predictive is the same as the prior predictive using the posterior given x as the prior when predicting $x_{N E W}$. Using (a), we get in our case that

$$
p \mid x \sim \operatorname{Beta}(\alpha+x, \beta+r)=\operatorname{Beta}(2+1,1+2)=\operatorname{Beta}(3,3)
$$

and using (b) we then get

$$
\begin{aligned}
\pi\left(x_{N E W} \mid x\right) & =\binom{x_{N E W}+2-1}{x_{N E W}} \frac{\Gamma(3+3) \Gamma\left(3+x_{N E W}\right) \Gamma(3+2)}{\Gamma(3) \Gamma(3) \Gamma\left(3+x_{N E W}+3+2\right)} \\
& =720 \frac{x_{N E W}+1}{\left(x_{N E W}+3\right)\left(x_{N E W}+4\right)\left(x_{N E W}+5\right)\left(x_{N E W}+6\right)\left(x_{N E W}+7\right)}
\end{aligned}
$$

(d) Let C be a varriable such that $C=1$ means model 1 is used and $C=2$ means model 2 is used. The Bayes factor B is equal to the likelihood ratio $\pi(x \mid C=1) / \pi(x \mid C=2)$. Thus it is equal to the ratio of the corresponding prior predictive distributions:

$$
\begin{aligned}
B & =\frac{\binom{x+r-1}{x} \frac{\Gamma\left(\alpha_{1}+\beta_{1}\right) \Gamma\left(\alpha_{1}+x\right) \Gamma\left(\beta_{1}+r\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\beta_{1}\right) \Gamma\left(\alpha_{1}+x+\beta_{1}+r\right)}}{\binom{x+r-1}{x} \Gamma\left(\alpha_{2}+\beta_{2}\right) \Gamma\left(\alpha_{2}+x\right) \Gamma\left(\beta_{2}+r\right)} \Gamma \\
& =\frac{\Gamma\left(\alpha_{2}\right) \Gamma\left(\beta_{2}\right) \Gamma\left(\alpha_{2}+x+\beta_{2}+r\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{1}+x\right) \Gamma\left(\beta_{1}+r\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\beta_{2}\right) \Gamma\left(\alpha_{2}+x+\beta_{2}+r\right)} \\
& \left.x+\beta_{1}+r\right) \Gamma\left(\alpha_{2}+\beta_{2}\right) \Gamma\left(\alpha_{2}+x\right) \Gamma\left(\beta_{2}+r\right)
\end{aligned}
$$

(e) We have, apriori, that $\pi(C=1)=\pi(C=2)=0.5$. The posterior probabilities for the two models can be computed using Bayes formula on odds form, i.e.,

$$
\frac{\pi(C=1 \mid x)}{1-\pi(C=1 \mid x)}=B \cdot \frac{\pi(C=1)}{\pi(C=2)}=B \cdot 1
$$

which solves to $\pi(C=1 \mid x)=B /(1+B)$. Using the posterior for each model computed in (a), the posterior probability density for p given x is

$$
\frac{B}{1+B} \cdot \frac{\Gamma\left(\alpha_{1}+x+\beta_{1}+r\right)}{\Gamma\left(\alpha_{1}+x\right) \Gamma\left(\beta_{1}+r\right)} p^{\alpha_{1}+x-1}(1-p)^{\beta_{1}+r-1}+\frac{1}{1+B} \cdot \frac{\Gamma\left(\alpha_{2}+x+\beta_{2}+r\right)}{\Gamma\left(\alpha_{2}+x\right) \Gamma\left(\beta_{2}+r\right)} p^{\alpha_{2}+x-1}(1-p)^{\beta_{2}+r-1}
$$

3. (a) The cumulative density for an Exponential distribution with parameter 2.7 is, for $x \geq 0$,

$$
F(x)=1-\exp (-2.7 x) .
$$

Writing $U=F(x)$, we get $x=-\log (1-U) / 2.7$. Thus, we may simulate from the distribution by first simulating U^{\prime} uniformly on the interval [0,1], and then computing $x=-\log \left(U^{\prime}\right) / 2.7$.
(b) Simulation may be done in several ways; one option is to simulate x from a Gamma distribution with parameters $\alpha=2.7$ and $\beta=9.1$ and output $1 / x$. The Gamma distribution has density

$$
\pi(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp (-\beta x)
$$

and it is possible to simulate from it using rejection sampling. Differentiation shows that this density has its maximum at $(\alpha-1) / \beta=1.7 / 9.1=0.1868132$, where the density is then 2.652551 . But we can also use the identity $\log (x) \leq x-1$ to show that

$$
\begin{aligned}
\pi(x)= & \frac{\beta^{\alpha}}{\Gamma(\alpha)} \exp (-\beta x+(\alpha-1) \log (x)) \leq \frac{\beta^{\alpha}}{\Gamma(\alpha)} \exp (-\beta x+(\alpha-1)(x-1)) \\
& =45.94846 \cdot \exp (-7.4 x)<6.21 \cdot 7.4 \exp (-7.4 x)
\end{aligned}
$$

when we use that $\alpha=2.7$ and $\beta=9.1$. Thus a simple solution is to use rejection sampling with an exponential distribution with parameter 7.4 as a proposal distribution, and $M=6.21$. (More efficient simulation solutions exist, for example by using a different proposal density for small x).
(c) We can recognize this density as a mixture of normal densities:

$$
\pi(x)=\sum_{i=1}^{7} w_{i} \operatorname{Normal}\left(x ; u_{i}, 1\right)
$$

where $\operatorname{Normal}\left(x ; u_{i}, 1\right)$ denotes the value in x of the normal density with expectation u_{i} and variance 1 . To simulate from this density, simulate first an index i according to the probabilities w_{1}, \ldots, w_{7}. This can be done by simulating U uniforrmly on $[0,1]$ and finding the smallest i such that $w_{1}+\cdots+w_{i} \geq U$. Then, if ϕ^{-1} is the inverse of the cumulative distribution function for the standard normal distribution, we may output

$$
\phi^{-1}(V)+u_{i}
$$

where V is uniformly simulated on $[0,1]$.
4. (a) A Bayesian Network is a Directed Acyclic Graph (DAG), for each node i in the network a variable x_{i}, and for each such node a conditional probability density $\pi\left(x_{i} \mid\right.$ $x_{j_{1}}, \ldots, x_{j_{k}}$), where j_{1}, \ldots, j_{k} are the indices of the parents of node i in the DAG. The product of these conditional probability densities represents the joint probability density for the network.
(b) A Markov Network is an undirected graph, for each node i in the network a variable x_{i}, and for each set of nodes with indices j_{1}, \ldots, j_{k} such that all nodes in the set are connected in the graph a nonnegative function $\phi\left(x_{j_{1}}, \ldots, x_{j_{k}}\right)$. The product of all the factors represents the (unnormalized) probability density of the network.
(c) If the value x_{i} of a node i is observed in a Bayesian network, the probability density for the remaining nodes is obtained as the conditional density given x_{i}. If the value of node i is set by intervention in a causal network with the same structure, the probability density for the remaining nodes is obtained by first removing the conditional density $\pi\left(x_{i} \mid x_{j_{1}}, \ldots, x_{j_{i}}\right)$ in the product of conditional densities representing the Bayesian network, before conditioning on the value x_{i} in the remaining product.
(d) Two nodes i and j are connected in the Markov graph if and only if $\tau_{i j} \neq 0$, where $\tau_{i j}$ is the value in the i 'th row and j 'th column of the precision matrix.
5. If an integral is written as $I=\int f(x) g(x) d x$ with $g(x)$ being a probability density, then Monte Carlo integration means making the approximation

$$
I=E_{g}[f(x)]=\int f(x) g(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)=\hat{I}
$$

where x_{1}, \ldots, x_{n} is a sample from the density $g(x)$. As long as $f(x)$ has finite variance σ^{2} when x is distributed according to $g(x)$, the Central Limit Theorem tells us that, for large n, and assuming the sample is a random sample, we have approximately

$$
\hat{I} \sim \operatorname{Normal}\left(E_{g}[f(x)], \sigma^{2} / n\right)
$$

and this can be used to obtain approximate estimates for $\hat{I}-I$.
6. (a) The posterior density for the model can be written as

$$
\begin{aligned}
& \pi(\alpha) \pi(\beta) \prod_{i=1}^{k}\left[\left[\prod_{j=1}^{s} \pi\left(c_{i j} \mid \lambda_{i}\right)\right] \pi\left(\lambda_{i} \mid \alpha, \beta\right)\right] \\
\propto & \beta^{5-1} \exp (-2 \beta) \prod_{i=1}^{k}\left[\left[\prod_{j=1}^{s} \exp \left(-\lambda_{i}\right) \frac{\lambda_{i}^{c_{i j}}}{c_{i j}!}\right] \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda_{i}^{\alpha-1} \exp \left(-\beta \lambda_{i}\right)\right]
\end{aligned}
$$

Taking the logarithm and removing additive terms not depending on α, β, or $\lambda_{1}, \ldots, \lambda_{k}$, we get the \log posterior

$$
\begin{aligned}
& 4 \log (\beta)-2 \beta+\sum_{i=1}^{k}\left[\left[\sum_{j=1}^{s}-\lambda_{i}+c_{i j} \log \left(\lambda_{i}\right)\right]+\alpha \log (\beta)-\log (\Gamma(\alpha))+(\alpha-1) \log \left(\lambda_{i}\right)-\beta \lambda_{i}\right] \\
= & (4+k \alpha) \log (\beta)-2 \beta-k \log (\Gamma(\alpha))-(s+\beta) \sum_{i=1}^{k} \lambda_{i}+\sum_{i=1}^{k}\left(\alpha+\sum_{j=1}^{s} c_{i j}-1\right) \log \left(\lambda_{i}\right)
\end{aligned}
$$

(b) Given a function $f\left(\theta_{1}, \ldots, \theta_{n}\right)$ proportional to a joint density for the parameters $\theta=$ $\left(\theta_{1}, \ldots, \theta_{n}\right)$, assume you can derive and simulate from each of the conditional distributions $\pi\left(x_{i} \mid x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$, for $i=1, \ldots, n$. Then Gibbs sampling entails first simulating a vector of parameters $\theta^{(0)}$ from some distribution, followed by, for each t, updating $\theta^{(t)}$ to $\theta^{(t+1)}$ by sequentially simulating from the conditional distributions mentioned above, using updated values for the remaining parameters each time. This can be seen as a version of the Metropolis Hastings algorithm, and thus, under general conditions, the distribution of $\theta^{(t)}$ will approach the original joint density when $t \rightarrow \infty$.
(c) In the model above, we see from the loglikelihood of question (a) that, for $i=$ $1, \ldots, k$,

$$
\lambda_{i} \mid \alpha, \beta, c_{i 1}, \ldots, c_{i s} \sim \operatorname{Gamma}\left(\alpha+\sum_{j=1}^{s} c_{i j}, \beta+s\right)
$$

while

$$
\beta \mid \alpha \lambda_{1}, \ldots, \lambda_{k} \sim \operatorname{Gamma}\left(5+k \alpha, 2+\sum_{i=1}^{k} \lambda_{i}\right)
$$

For α we get

$$
\pi\left(\alpha \mid \beta, \lambda_{1}, \ldots, \lambda_{k}\right) \propto \exp \left(\left(k \log (\beta)+\sum_{i=1}^{k} \log \left(\lambda_{i}\right)\right) \alpha-k \log (\Gamma(\alpha))\right)
$$

This can be simulated from using for example rejection sampling.
7. (a) The simplest (but not by a long shot the most efficient) alternative would be to use as proposal density g a uniform distribution on the interval [$-15,35]$. Its density on this
interval would be $1 / 50=0.02$, and so we can see from the figure that choosing for example $M=7$, we get $M g(x) \geq f(x)$, where $f(x)$ is the target density. For each iteration, the algorithm would simulate $x \sim \operatorname{Uniform}[-15,35]$ and $U \sim$ Uniform $[0,0.14]$, and would then reject x unless $U \leq f(x)$.
(b) The simplest possiblity would again be to use a uniform distribution on $[-15,35]$ as proposal function. The main difference with (a) would be that the chain would contain a number of repeated values; it would "get stuck" for a while at values corresponding to the peaks in the figure. However, one may also use a more tailored proposal function, for example a mixture of three normals, with expectations $-6,6$, and 11 , respectively, and with respective standard deviations 1,1 , and 4 , for example.
(c) With a random walk Metropolis Hastings, you would like the Markov chain to be able to jump from one area of high density to another, i.e., occationally it should jump a length around 8 . Thus a normal distribution with standard deviation 4 could be suitable.
(d) If you rescale the proposal function to a much smaller variance, there is a danger that the Markov chain would get stuck in one of the areas of high density for a very long time, as a chain passing the areas of low density would be unlikely. If ou rescale to a much larger variance, one would get the problem that the proposed values would very rarely be accepted, and the chain would be stuck at a single value for that reason.

