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1. The first statement is used within frequentist statistics. Its interpretation is as follows:
There are statistics L1 and L2 defined in terms of a sample x′1, . . . , x

′
n from a normal distri-

bution with expectation θ and variance 1, such that the stochastic interval [L1, L2] contains
θwith 95% probability; the values of these statistics computed on the given data is L1 = 2.3
and L2 = 2.5.

The second statement is used within Bayesian statistics. Its interpretation is as follows:
With some prior on θ (not specified in the question), the posterior probability that θ is in
the interval [2.3, 2.5] is 95%.

2. (a) If p ∼ Beta(α, β) and x | p ∼ Neg-Bin(r, p), then

π(p | x) ∝p π(x | p)π(p) ∝p (1 − p)r px pα−1(1 − p)β−1 = pα+x−1(1 − p)β+r−1.

Thus p | x ∼ Beta(α+ x, β+ r), and the Beta family of distributions is conjugate to to
the Negative Binomial distribution for the p parameter.

(b) We get

π(x) =
π(x | p)π(p)
π(p | x)

=

(
x + r − 1

x

)
(1 − p)r px Γ(α+β)

Γ(α)Γ(β) pα−1(1 − p)β−1

Γ(α+x+β+r)
Γ(α+x)Γ(β+r) pα+x−1(1 − p)β+r−1

=

(
x + r − 1

x

)
Γ(α + β)Γ(α + x)Γ(β + r)
Γ(α)Γ(β)Γ(α + x + β + r)

(c) The posterrior predictive is the same as the prior predictive using the posterior given
x as the prior when predicting xNEW . Using (a), we get in our case that

p | x ∼ Beta(α + x, β + r) = Beta(2 + 1, 1 + 2) = Beta(3, 3)

and using (b) we then get

π(xNEW | x) =

(
xNEW + 2 − 1

xNEW

)
Γ(3 + 3)Γ(3 + xNEW)Γ(3 + 2)
Γ(3)Γ(3)Γ(3 + xNEW + 3 + 2)

= 720
xNEW + 1

(xNEW + 3)(xNEW + 4)(xNEW + 5)(xNEW + 6)(xNEW + 7)



(d) Let C be a varriable such that C = 1 means model 1 is used and C = 2 means model 2
is used. The Bayes factor B is equal to the likelihood ratio π(x | C = 1)/π(x | C = 2).
Thus it is equal to the ratio of the corresponding prior predictive distributions:

B =

(
x + r − 1

x

)
Γ(α1+β1)Γ(α1+x)Γ(β1+r)
Γ(α1)Γ(β1)Γ(α1+x+β1+r)(

x + r − 1
x

)
Γ(α2+β2)Γ(α2+x)Γ(β2+r)
Γ(α2)Γ(β2)Γ(α2+x+β2+r)

=
Γ(α1 + β1)Γ(α1 + x)Γ(β1 + r)Γ(α2)Γ(β2)Γ(α2 + x + β2 + r)
Γ(α1)Γ(β1)Γ(α1 + x + β1 + r)Γ(α2 + β2)Γ(α2 + x)Γ(β2 + r)

(e) We have, apriori, that π(C = 1) = π(C = 2) = 0.5. The posterior probabilities for the
two models can be computed using Bayes formula on odds form, i.e.,

π(C = 1 | x)
1 − π(C = 1 | x)

= B ·
π(C = 1)
π(C = 2)

= B · 1

which solves to π(C = 1 | x) = B/(1 + B). Using the posterior for each model
computed in (a), the posterior probability density for p given x is

B
1 + B

·
Γ(α1 + x + β1 + r)
Γ(α1 + x)Γ(β1 + r)

pα1+x−1(1−p)β1+r−1+
1

1 + B
·
Γ(α2 + x + β2 + r)
Γ(α2 + x)Γ(β2 + r)

pα2+x−1(1−p)β2+r−1

3. (a) The cumulative density for an Exponential distribution with parameter 2.7 is, for
x ≥ 0,

F(x) = 1 − exp(−2.7x).

Writing U = F(x), we get x = − log(1 − U)/2.7. Thus, we may simulate from the
distribution by first simulating U′ uniformly on the interval [0, 1], and then computing
x = − log(U′)/2.7.

(b) Simulation may be done in several ways; one option is to simulate x from a Gamma
distribution with parameters α = 2.7 and β = 9.1 and output 1/x. The Gamma
distribution has density

π(x) =
βα

Γ(α)
xα−1 exp(−βx)

and it is possible to simulate from it using rejection sampling. Differentiation shows
that this density has its maximum at (α − 1)/β = 1.7/9.1 = 0.1868132, where the
density is then 2.652551. But we can also use the identity log(x) ≤ x− 1 to show that

π(x) =
βα

Γ(α)
exp(−βx + (α − 1) log(x)) ≤

βα

Γ(α)
exp(−βx + (α − 1)(x − 1))

= 45.94846 · exp(−7.4x) < 6.21 · 7.4 exp(−7.4x)

when we use that α = 2.7 and β = 9.1. Thus a simple solution is to use rejection
sampling with an exponential distribution with parameter 7.4 as a proposal distribu-
tion, and M = 6.21. (More efficient simulation solutions exist, for example by using
a different proposal density for small x).



(c) We can recognize this density as a mixture of normal densities:

π(x) =

7∑
i=1

wi Normal(x; ui, 1)

where Normal(x; ui, 1) denotes the value in x of the normal density with expectation
ui and variance 1. To simulate from this density, simulate first an index i according to
the probabilities w1, . . . ,w7. This can be done by simulating U uniforrmly on [0, 1]
and finding the smallest i such that w1 + · · ·+wi ≥ U. Then, if φ−1 is the inverse of the
cumulative distribution function for the standard normal distribution, we may output

φ−1(V) + ui

where V is uniformly simulated on [0, 1].

4. (a) A Bayesian Network is a Directed Acyclic Graph (DAG), for each node i in the
network a variable xi, and for each such node a conditional probability density π(xi |

x j1 , . . . , x jk), where j1, . . . , jk are the indices of the parents of node i in the DAG.
The product of these conditional probability densities represents the joint probability
density for the network.

(b) A Markov Network is an undirected graph, for each node i in the network a variable
xi, and for each set of nodes with indices j1, . . . , jk such that all nodes in the set are
connected in the graph a nonnegative function φ(x j1 , . . . , x jk). The product of all the
factors represents the (unnormalized) probability density of the network.

(c) If the value xi of a node i is observed in a Bayesian network, the probability den-
sity for the remaining nodes is obtained as the conditional density given xi. If the
value of node i is set by intervention in a causal network with the same structure, the
probability density for the remaining nodes is obtained by first removing the condi-
tional density π(xi | x j1 , . . . , x ji) in the product of conditional densities representing
the Bayesian network, before conditioning on the value xi in the remaining product.

(d) Two nodes i and j are connected in the Markov graph if and only if τi j , 0, where τi j

is the value in the i’th row and j’th column of the precision matrix.

5. If an integral is written as I =
∫

f (x)g(x) dx with g(x) being a probability density, then
Monte Carlo integration means making the approximation

I = Eg
[
f (x)

]
=

∫
f (x)g(x) dx ≈

1
n

n∑
i=1

f (xi) = Î

where x1, . . . , xn is a sample from the density g(x). As long as f (x) has finite variance σ2

when x is distributed according to g(x), the Central Limit Theorem tells us that, for large
n, and assuming the sample is a random sample, we have approximately

Î ∼ Normal
(
Eg

[
f (x)

]
, σ2/n

)
and this can be used to obtain approximate estimates for Î − I.



6. (a) The posterior density for the model can be written as

π(α)π(β)
k∏

i=1


 s∏

j=1

π(ci j | λi)

 π(λi | α, β)


∝ β5−1 exp(−2β)

k∏
i=1


 s∏

j=1

exp(−λi)
λ

ci j

i

ci j!

 βα

Γ(α)
λα−1

i exp(−βλi)


Taking the logarithm and removing additive terms not depending on α, β, or λ1, . . . , λk,
we get the log posterior

4 log(β) − 2β +

k∑
i=1


 s∑

j=1

−λi + ci j log(λi)

 + α log(β) − log(Γ(α)) + (α − 1) log(λi) − βλi


= (4 + kα) log(β) − 2β − k log(Γ(α)) − (s + β)

k∑
i=1

λi +

k∑
i=1

α +

s∑
j=1

ci j − 1

 log(λi)

(b) Given a function f (θ1, . . . , θn) proportional to a joint density for the parameters θ =

(θ1, . . . , θn), assume you can derive and simulate from each of the conditional distri-
butions π(xi | x1, . . . , xi−1, xi+1, . . . , xn), for i = 1, . . . , n. Then Gibbs sampling entails
first simulating a vector of parameters θ(0) from some distribution, followed by, for
each t, updating θ(t) to θ(t+1) by sequentially simulating from the conditional distribu-
tions mentioned above, using updated values for the remaining parameters each time.
This can be seen as a version of the Metropolis Hastings algorithm, and thus, un-
der general conditions, the distribution of θ(t) will approach the original joint density
when t → ∞.

(c) In the model above, we see from the loglikelihood of question (a) that, for i =

1, . . . , k,

λi | α, β, ci1, . . . , cis ∼ Gamma

α +

s∑
j=1

ci j, β + s


while

β | αλ1, . . . , λk ∼ Gamma

5 + kα, 2 +

k∑
i=1

λi


For α we get

π(α | β, λ1, . . . , λk) ∝ exp

k log(β) +

k∑
i=1

log(λi)

α − k log(Γ(α))


This can be simulated from using for example rejection sampling.

7. (a) The simplest (but not by a long shot the most efficient) alternative would be to use as
proposal density g a uniform distribution on the interval [−15, 35]. Its density on this



interval would be 1/50 = 0.02, and so we can see from the figure that choosing for
example M = 7, we get Mg(x) ≥ f (x), where f (x) is the target density. For each itera-
tion, the algorithm would simulate x ∼ Uniform[−15, 35] and U ∼ Uniform[0, 0.14],
and would then reject x unless U ≤ f (x).

(b) The simplest possiblity would again be to use a uniform distribution on [−15, 35]
as proposal function. The main difference with (a) would be that the chain would
contain a number of repeated values; it would "get stuck" for a while at values cor-
responding to the peaks in the figure. However, one may also use a more tailored
proposal function, for example a mixture of three normals, with expectations -6, 6,
and 11, respectively, and with respective standard deviations 1, 1, and 4, for example.

(c) With a random walk Metropolis Hastings, you would like the Markov chain to be
able to jump from one area of high density to another, i.e., occationally it should
jump a length around 8. Thus a normal distribution with standard deviation 4 could
be suitable.

(d) If you rescale the proposal function to a much smaller variance, there is a danger that
the Markov chain would get stuck in one of the areas of high density for a very long
time, as a chain passing the areas of low density would be unlikely. If ou rescale to a
much larger variance, one would get the problem that the proposed values would very
rarely be accepted, and the chain would be stuck at a single value for that reason.


