Petter Mostad
Applied Mathematics and Statistics
Chalmers

Suggested solutions for
 MSA101 / MVE187 Computational methods for Bayesian statistics Exam 21 October 2017

1. (a) We get

$$
\pi(p \mid x=3) \propto \pi(x=3 \mid p) \pi(p)=(1-p)^{3} p=p^{2-1}(1-p)^{4-1}
$$

Thus the posterior is a $\operatorname{Beta}(2,4)$ distribution.
(b) If $x \mid p \sim \operatorname{Geometric}(p)$ and $p \sim \operatorname{Beta}(\alpha, \beta)$, then

$$
\pi(p \mid x) \propto \pi(x \mid p) \pi(p) \propto(1-p)^{x} p p^{\alpha-1}(1-p)^{\beta-1}=p^{\alpha+1-1}(1-p)^{\beta+x-1}
$$

so $p \mid x \sim \operatorname{Beta}(\alpha+1, \beta+x)$, and the Beta family is conjugate to the Geometric distribution.
(c) If p has a uniform prior on $[0,1]$, the posterior given x is $\operatorname{Beta}(2,1+x)$ and the posterior given x and y is $\operatorname{Beta}(3,1+x+y)$. Thus

$$
\begin{aligned}
& \pi(y \mid x)=\frac{\pi(y \mid p) \pi(p \mid x)}{\pi(p \mid x, y)} \\
&=\frac{\operatorname{Geometric}(y ; p) \operatorname{Beta}(p ; 2,1+x)}{\operatorname{Beta}(p ; 3,1+x+y)} \\
&=\frac{(1-p)^{y} p \Gamma(2+1+x)}{\Gamma(2+1+(1+x)} p^{1}(1-p)^{x} \\
& \frac{\Gamma(3+1+x+y)}{\Gamma(1+x+y)} p^{2}(1-p)^{x+y} \\
&=\frac{\Gamma(3+x) \Gamma(3) \Gamma(1+x+y)}{\Gamma(4+x+y) \Gamma(2) \Gamma(1+x)}
\end{aligned}
$$

When $x=3$ this becomes

$$
\pi(y \mid x)=\frac{\Gamma(6) \Gamma(3) \Gamma(4+y)}{\Gamma(7+y) \Gamma(2) \Gamma(4)}=\frac{40}{(4+y)(5+y)(6+y)}
$$

2. Note first that $\operatorname{Gamma}(1, \beta)=\operatorname{Exponential}(\beta)$. As the Exponential distribution has a cumulative distribution function that is easy to compute, we may simulate from Exponential (β) by simulating $U \sim \operatorname{Uniform}[0,1]$ and computing $-\log (U) / \beta$. Thus, when α is an integer, we may simulate from $\operatorname{Gamma}(\alpha, \beta)$, by simulating $U_{1}, \ldots, U_{\alpha} \sim \operatorname{Uniform}[0,1]$ and computing

$$
-\frac{1}{\beta} \sum_{i=1}^{\alpha} \log \left(U_{i}\right)
$$

3. (a) We get

$$
\begin{aligned}
a_{0} & =\operatorname{Pr}\left(x_{0}=1 \mid y_{0}\right) \\
& =\frac{\operatorname{Pr}\left(y_{0} \mid x_{0}=1\right) \operatorname{Pr}\left(x_{0}=1\right)}{\operatorname{Pr}\left(y_{0} \mid x_{0}=1\right) \operatorname{Pr}\left(x_{0}=1\right)+\operatorname{Pr}\left(y_{0} \mid x_{0}=0\right) \operatorname{Pr}\left(x_{0}=0\right)} \\
& =\frac{0.8 \cdot 0.1}{0.8 \cdot 0.1+0.3 \cdot 0.9}=\frac{8}{35}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \operatorname{Pr}\left(x_{1}=1 \mid y_{0}\right) \\
= & \operatorname{Pr}\left(x_{1}=1 \mid x_{0}=1\right) \operatorname{Pr}\left(x_{0}=1 \mid y_{0}\right)+\operatorname{Pr}\left(x_{1}=1 \mid x_{0}=0\right) \operatorname{Pr}\left(x_{0}=0 \mid y_{0}\right) \\
= & 0.4 \cdot \frac{8}{35}+0.2 \cdot\left(1-\frac{8}{35}\right)=\frac{43}{175}
\end{aligned}
$$

and thus (assuming $y_{0}=1$ and $y_{1}=0$)

$$
\begin{aligned}
a_{1} & =\operatorname{Pr}\left(x_{1}=1 \mid y_{0}, y_{1}\right) \\
& =\frac{\operatorname{Pr}\left(y_{1} \mid x_{1}=1\right) \operatorname{Pr}\left(x_{1}=1 \mid y_{0}\right)}{\operatorname{Pr}\left(y_{1} \mid x_{1}=1\right) \operatorname{Pr}\left(x_{1}=1 \mid y_{0}\right)+\operatorname{Pr}\left(y_{1} \mid x_{1}=0\right) \operatorname{Pr}\left(x_{1}=0 \mid y_{0}\right)} \\
& =\frac{0.8 \cdot \frac{43}{175}}{0.8 \cdot \frac{43}{175}+0.3 \cdot\left(1-\frac{43}{175}\right)}=\frac{86}{185}
\end{aligned}
$$

(Full points were given to those who used the right formulas without completing the numerical calculations.)
(b) We get

$$
\begin{aligned}
b_{T-1} & =\operatorname{Pr}\left(y_{T} \mid x_{T-1}=1\right) \\
& =\operatorname{Pr}\left(y_{T} \mid x_{T}=1\right) \operatorname{Pr}\left(x_{T}=1 \mid x_{T-1}=1\right)+\operatorname{Pr}\left(y_{T} \mid x_{T}=0\right) \operatorname{Pr}\left(x_{T}=0 \mid x_{T-1}=1\right) \\
& =0.8 \cdot 0.4+0.3 \cdot 0.6=0.5 .
\end{aligned}
$$

(c) For $i=0, \ldots, T-1$, we can write

$$
\pi\left(x_{i} \mid y_{0}, \ldots, y_{T}\right) \propto \pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right) \pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right)
$$

Thus we get

$$
\begin{aligned}
\pi\left(x_{i}=1 \mid y_{0}, \ldots, y_{t}\right) & =\frac{\pi\left(x_{i}=1 \mid y_{0}, \ldots, y_{i}\right) \pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}=1\right)}{\sum_{j=0}^{1} \pi\left(x_{i}=j \mid y_{0}, \ldots, y_{0}\right) \pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}=j\right)} \\
& =\frac{a_{i} b_{i}}{a_{i} b_{i}+\left(1-a_{i}\right)\left(1-b_{i}\right)}
\end{aligned}
$$

4. (a) For the posterior we have

$$
\begin{aligned}
& \pi\left(\left(\lambda_{1}, \ldots, \lambda_{n}, \beta \mid x_{11}, \ldots, x_{n m}\right)\right. \\
\propto & \pi\left(x_{11}, \ldots, x_{n m} \mid \lambda_{1}, \ldots, \lambda_{n}\right) \pi\left(\lambda_{1}, \ldots, \lambda_{n} \mid \beta\right) \pi(\beta) \\
\propto & {\left[\prod_{i=1}^{n} \prod_{j=1}^{m} \lambda_{i} \exp \left(-\lambda_{i} x_{i j}\right)\right]\left[\prod_{i=1}^{n} \frac{\beta^{4}}{\Gamma(4)} \lambda_{i}^{4-1} \exp \left(-\beta \lambda_{i}\right)\right] \beta^{3-1} \exp (-4 \beta) }
\end{aligned}
$$

Thus the logarithm of the posterior density becomes, up to an additive constant,

$$
\begin{aligned}
& 2 \log (\beta)-4 \beta+\sum_{i=1}^{n}\left[4 \log (\beta)+3 \log \left(\lambda_{i}\right)-\beta \lambda_{i}+\sum_{j=1}^{m}\left[\log \left(\lambda_{i}\right)-\lambda_{i} x_{i j}\right]\right] \\
= & (m+3) \sum_{i=1}^{n} \log \left(\lambda_{i}\right)-\sum_{i=1}^{n} \lambda_{i}\left(\sum_{j=1}^{m} x_{i j}\right)-\beta \sum_{i=1}^{n} \lambda_{i}+(4 n+2) \log (\beta)-4 \beta
\end{aligned}
$$

(b) Fixing all values except λ_{i}, the logarith of the posterior becomes, up to an additive constant,

$$
(m+3) \log \left(\lambda_{i}\right)-\lambda_{i} \sum_{j=1}^{m} x_{i j}-\beta \lambda_{i}
$$

From this we can read off that the conditional distribution to be used for λ_{i} in the Gibbs sampling is

$$
\operatorname{Gamma}\left(m+4, \beta+\sum_{j=1}^{m} x_{i j}\right)
$$

Fixing all values except β we get

$$
(4 n+2) \log (\beta)-\left(4+\sum_{i=1}^{n} \lambda_{i}\right) \beta
$$

from which we get that the conditional distribution for β is

$$
\operatorname{Gamma}\left(4 n+3,4+\sum_{i=1}^{n} \lambda_{i}\right)
$$

A Gibbs sampler for this model would initiate the simulation with reasonable values for $\lambda_{1}, \ldots, \lambda_{n}, \beta$: For example we could set

$$
\lambda_{i}=\frac{1}{m} \sum_{j=1}^{m} x_{i j}
$$

and then

$$
\beta=\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}
$$

The algorithm would then iterate between simulating the λ_{i} and β according to the conditional distributions found above.
(c) We could extend the simulation by simulating values in the Gibbs sampler for all $x_{i j}$ that are censored. Specifically, censored $x_{i j}$ should be simulated from the truncated Exponential distribution with parameter λ_{i}, truncated so that $x_{i j}>10$. With the $x_{i j}$ simulated in this way, the remaining Gibbs sampling steps could be performed as above.
More formally, let $c_{i j}$ be the censored data, so that $c_{i j}=x_{i j}$ when $x_{i j}<10$ and $c_{i j}=10$ when $x_{i j} \geq 10$. The full posterior then gets an extra factor

$$
\prod_{i=1}^{n} \prod_{j=1}^{m} I\left[x_{i j}=c_{i j}\right]^{I\left[c_{i j}<10\right]} I\left[x_{i j} \geq 10\right]^{I\left[c_{i j}=10\right]} .
$$

Removing the factors not containing $x_{i j}$ from the posterior, we get that $x_{i j}=c_{i j}$ when $c_{i j}<10$ and

$$
\pi\left(x_{i j} \mid \ldots\right) \propto I\left[x_{i j} \geq 10\right] \lambda_{i} \exp \left(-\lambda_{i} x_{i j}\right)
$$

when $c_{i j}=10$. Thus, in the Gibbs sampling, any censored $x_{i j}$ should be simpulated from an Exponential distribution with parameter λ_{i} truncated to be greater than or equal to 10. In other words, one may simulate from an Exponential distribution with parameter λ_{i} and then add 10 .
5. (a) Assume you want to simulate from a density proportional to $f(x)$ and that

$$
f(x)=\prod_{i=1}^{n} g_{i}(x)
$$

for some non-negative functions $g_{1}(x), \ldots, g_{n}(x)$. Define instrumental variables y_{1}, \ldots, y_{n} with

$$
y_{i} \mid x \sim \operatorname{Uniform}\left[0, g_{i}(x)\right]
$$

Then the joint density can be written

$$
\pi\left(x, y_{1}, \ldots, y_{n}\right) \propto \prod_{i=1}^{n} g_{i}(x) \prod_{i=1}^{n} \frac{I\left(0 \leq y_{i} \leq g_{i}(x)\right)}{g_{i}(x)}=\prod_{i=1}^{n} I\left(0 \leq y_{i} \leq g_{i}(x)\right)
$$

Thus a Gibbs sampler will iterate between sampling the y_{i} from the uniform densities given above, and sampling x from the uniform distribution on the set

$$
\bigcap_{i=1}^{n}\left\{x: y_{i} \leq g_{i}(x)\right\}
$$

(b) In this case, we can use

$$
g_{1}(x)=\exp \left(-(x+1)^{2}\right)
$$

and

$$
g_{2}(x)=\frac{1}{3+x^{4}}
$$

Indeed, for positive x, we get that $g_{1}^{\prime}(x)=\exp \left(-(x+1)^{2}\right)(-2(x+1))<0$ and $g_{2}^{\prime}(x)=$ $-\left(3+x^{4}\right)^{-2} 4 x^{3}<0$, so both functions are strictly decreasing. We see that $y_{1} \leq$ $\exp \left(-(x+1)^{2}\right)$ is equivalent to $x \leq \sqrt{-\log \left(y_{1}\right)}-1$ and that $y_{2} \leq 1 /\left(3+x^{4}\right)$ is equivalent to $x \leq\left(1 / y_{2}-3\right)^{1 / 4}$. Thus we simulate

$$
x \mid y_{1}, y_{2} \sim \text { Uniform }\left[0, \min \left(\sqrt{-\log \left(y_{1}\right)}-1,\left(1 / y_{2}-3\right)^{1 / 4}\right)\right]
$$

6. (a) We get

$$
\begin{aligned}
& \log \left(\pi\left(y_{1}, \ldots, y_{n}, X_{1}, \ldots, X_{n} \mid \theta\right)\right) \\
= & \log \left(\prod_{i=1}^{n}\left[\left((1-\theta) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y_{i}^{2}\right)\right)^{I\left(X_{i}=0\right)}\left(\theta \frac{1}{\pi\left(1+y_{i}^{2}\right)}\right)^{I\left(X_{i}=1\right)}\right]\right) \\
= & \sum_{i=1}^{n}\left[I\left(X_{i}=0\right)\left(\log (1-\theta)-\frac{1}{2} \log (2 \pi)-\frac{1}{2} y_{i}^{2}\right)+\right. \\
& \left.I\left(X_{i}=1\right)\left(\log (\theta)-\log (\pi)-\log \left(1+y_{i}^{2}\right)\right)\right]
\end{aligned}
$$

(b) We have

$$
\frac{\operatorname{Pr}\left[X_{i}=1 \mid y_{1}, \ldots, y_{n}, \theta^{\prime}\right]}{\operatorname{Pr}\left[X_{i}=0 \mid y_{1}, \ldots, y_{n}, \theta^{\prime}\right]}=\frac{\operatorname{Pr}\left[y_{i} \mid X_{i}=1\right]}{\operatorname{Pr}\left[y_{i} \mid X_{i}=0\right]} \cdot \frac{\operatorname{Pr}\left[X_{i}=1 \mid \theta^{\prime}\right]}{\operatorname{Pr}\left[X_{i}=0 \mid \theta^{\prime}\right]}=\frac{\frac{1}{\pi\left(1+y_{i}^{2}\right)}}{\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y_{i}^{2}\right)} \cdot \frac{\theta^{\prime}}{1-\theta^{\prime}}
$$

Thus

$$
w_{i}=\operatorname{Pr}\left[X_{i}=1 \mid y_{1}, \ldots, y_{n}, \theta^{\prime}\right]=\frac{\frac{1}{\pi\left(1+y_{i}^{2}\right)} \theta^{\prime}}{\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y_{i}^{2}\right)\left(1-\theta^{\prime}\right)+\frac{1}{\pi\left(1+y_{i}^{2}\right)} \theta^{\prime}}
$$

(c) We get

$$
\begin{aligned}
Q\left(\theta \mid \theta^{\prime}\right)= & E_{\theta^{\prime}}\left[\log \left(\pi\left(y_{1}, \ldots, y_{n}, X_{1}, \ldots, X_{n} \mid \theta\right)\right)\right] \\
= & E_{\theta^{\prime}}\left[\sum _ { i = 1 } ^ { n } \left[I\left(X_{i}=0\right)\left(\log (1-\theta)-\frac{1}{2} \log (2 \pi)-\frac{1}{2} y_{i}^{2}\right)+\right.\right. \\
& \left.\left.I\left(X_{i}=1\right)\left(\log (\theta)-\log (\pi)-\log \left(1+y_{i}^{2}\right)\right)\right]\right] \\
= & \sum_{i=1}^{n}\left[\left(1-w_{i}\right)\left(\log (1-\theta)-\frac{1}{2} \log (2 \pi)-\frac{1}{2} y_{i}^{2}\right)+\right. \\
& \left.w_{i}\left(\log (\theta)-\log (\pi)-\log \left(1+y_{i}^{2}\right)\right)\right]
\end{aligned}
$$

(d) From (c) we get that the value of $Q\left(\theta \mid \theta^{\prime}\right)$ is, except for an additive term not depending on θ,

$$
\log (1-\theta) \sum_{i=1}^{n}\left(1-w_{i}\right)+\log (\theta) \sum_{i=1}^{n} w_{i}
$$

Differentiating with respect to θ, setting to zero, and solving, gives

$$
\theta=\frac{1}{n} \sum_{i=1}^{n} w_{i}
$$

Thus this value maximizes $Q\left(\theta, \mid \theta^{\prime}\right)$.
(e) The EM algorithm would start with a reasonable estimate for θ and for the X_{i}. Then, one would iterate between computing the w_{i} as in (b) and computing the θ as in (d) until convergence.

