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1. (a) We get

π(p | x = 3) ∝ π(x = 3 | p)π(p) = (1 − p)3 p = p2−1(1 − p)4−1.

Thus the posterior is a Beta(2, 4) distribution.

(b) If x | p ∼ Geometric(p) and p ∼ Beta(α, β), then

π(p | x) ∝ π(x | p)π(p) ∝ (1 − p)x ppα−1(1 − p)β−1 = pα+1−1(1 − p)β+x−1

so p | x ∼ Beta(α + 1, β + x), and the Beta family is conjugate to the Geometric
distribution.

(c) If p has a uniform prior on [0, 1], the posterior given x is Beta(2, 1 + x) and the
posterior given x and y is Beta(3, 1 + x + y). Thus

π(y | x) =
π(y | p)π(p | x)
π(p | x, y)

=
Geometric(y; p) Beta(p; 2, 1 + x)

Beta(p; 3, 1 + x + y)

=
(1 − p)y p Γ(2+1+x)

Γ(2)Γ(1+x) p1(1 − p)x

Γ(3+1+x+y)
Γ(3)Γ(1+x+y) p2(1 − p)x+y

=
Γ(3 + x)Γ(3)Γ(1 + x + y)
Γ(4 + x + y)Γ(2)Γ(1 + x)

When x = 3 this becomes

π(y | x) =
Γ(6)Γ(3)Γ(4 + y)
Γ(7 + y)Γ(2)Γ(4)

=
40

(4 + y)(5 + y)(6 + y)

2. Note first that Gamma(1, β) = Exponential(β). As the Exponential distribution has a cumu-
lative distribution function that is easy to compute, we may simulate from Exponential(β)
by simulating U ∼ Uniform[0, 1] and computing − log(U)/β. Thus, when α is an inte-
ger, we may simulate from Gamma(α, β), by simulating U1, . . . ,Uα ∼ Uniform[0, 1] and
computing

−
1
β

α∑
i=1

log(Ui)



3. (a) We get

a0 = Pr(x0 = 1 | y0)

=
Pr(y0 | x0 = 1) Pr(x0 = 1)

Pr(y0 | x0 = 1) Pr(x0 = 1) + Pr(y0 | x0 = 0) Pr(x0 = 0)

=
0.8 · 0.1

0.8 · 0.1 + 0.3 · 0.9
=

8
35

Also,

Pr(x1 = 1 | y0)
= Pr(x1 = 1 | x0 = 1) Pr(x0 = 1 | y0) + Pr(x1 = 1 | x0 = 0) Pr(x0 = 0 | y0)

= 0.4 ·
8

35
+ 0.2 ·

(
1 −

8
35

)
=

43
175

and thus (assuming y0 = 1 and y1 = 0)

a1 = Pr(x1 = 1 | y0, y1)

=
Pr(y1 | x1 = 1) Pr(x1 = 1 | y0)

Pr(y1 | x1 = 1) Pr(x1 = 1 | y0) + Pr(y1 | x1 = 0) Pr(x1 = 0 | y0)

=
0.8 · 43

175

0.8 · 43
175 + 0.3 ·

(
1 − 43

175

) =
86

185

(Full points were given to those who used the right formulas without completing the
numerical calculations.)

(b) We get

bT−1 = Pr(yT | xT−1 = 1)
= Pr(yT | xT = 1) Pr(xT = 1 | xT−1 = 1) + Pr(yT | xT = 0) Pr(xT = 0 | xT−1 = 1)
= 0.8 · 0.4 + 0.3 · 0.6 = 0.5.

(c) For i = 0, . . . ,T − 1, we can write

π(xi | y0, . . . , yT ) ∝ π(xi | y0, . . . , yi)π(yi+1, . . . , yT | xi)

Thus we get

π(xi = 1 | y0, . . . , yt) =
π(xi = 1 | y0, . . . , yi)π(yi+1, . . . , yT | xi = 1)∑1
j=0 π(xi = j | y0, . . . , y0)π(yi+1, . . . , yT | xi = j)

=
aibi

aibi + (1 − ai)(1 − bi)



4. (a) For the posterior we have

π((λ1, . . . , λn, β | x11, . . . , xnm)
∝ π(x11, . . . , xnm | λ1, . . . , λn)π(λ1, . . . , λn | β)π(β)

∝

 n∏
i=1

m∏
j=1

λi exp(−λixi j)


 n∏

i=1

β4

Γ(4)
λ4−1

i exp(−βλi)

 β3−1 exp(−4β)

Thus the logarithm of the posterior density becomes, up to an additive constant,

2 log(β) − 4β +

n∑
i=1

4 log(β) + 3 log(λi) − βλi +

m∑
j=1

[
log(λi) − λixi j

]
= (m + 3)

n∑
i=1

log(λi) −
n∑

i=1

λi

 m∑
j=1

xi j

 − β n∑
i=1

λi + (4n + 2) log(β) − 4β

(b) Fixing all values except λi, the logarith of the posterior becomes, up to an additive
constant,

(m + 3) log(λi) − λi

m∑
j=1

xi j − βλi

From this we can read off that the conditional distribution to be used for λi in the
Gibbs sampling is

Gamma

m + 4, β +

m∑
j=1

xi j


Fixing all values except β we get

(4n + 2) log(β) −

4 +

n∑
i=1

λi

 β
from which we get that the conditional distribution for β is

Gamma

4n + 3, 4 +

n∑
i=1

λi


A Gibbs sampler for this model would initiate the simulation with reasonable values
for λ1, . . . , λn, β: For example we could set

λi =
1
m

m∑
j=1

xi j

and then

β =
1
n

n∑
i=1

λi

The algorithm would then iterate between simulating the λi and β according to the
conditional distributions found above.



(c) We could extend the simulation by simulating values in the Gibbs sampler for all xi j

that are censored. Specifically, censored xi j should be simulated from the truncated
Exponential distribution with parameter λi, truncated so that xi j > 10. With the xi j

simulated in this way, the remaining Gibbs sampling steps could be performed as
above.
More formally, let ci j be the censored data, so that ci j = xi j when xi j < 10 and ci j = 10
when xi j ≥ 10. The full posterior then gets an extra factor

n∏
i=1

m∏
j=1

I[xi j = ci j]I[ci j<10]I[xi j ≥ 10]I[ci j=10].

Removing the factors not containing xi j from the posterior, we get that xi j = ci j when
ci j < 10 and

π(xi j | . . . ) ∝ I[xi j ≥ 10]λi exp(−λixi j)

when ci j = 10. Thus, in the Gibbs sampling, any censored xi j should be simpulated
from an Exponential distribution with parameter λi truncated to be greater than or
equal to 10. In other words, one may simulate from an Exponential distribution with
parameter λi and then add 10.

5. (a) Assume you want to simulate from a density proportional to f (x) and that

f (x) =

n∏
i=1

gi(x)

for some non-negative functions g1(x), . . . , gn(x). Define instrumental variables y1, . . . , yn

with
yi | x ∼ Uniform[0, gi(x)]

Then the joint density can be written

π(x, y1, . . . , yn) ∝
n∏

i=1

gi(x)
n∏

i=1

I(0 ≤ yi ≤ gi(x))
gi(x)

=

n∏
i=1

I(0 ≤ yi ≤ gi(x))

Thus a Gibbs sampler will iterate between sampling the yi from the uniform densities
given above, and sampling x from the uniform distribution on the set

n⋂
i=1

{x : yi ≤ gi(x)}

(b) In this case, we can use
g1(x) = exp

(
−(x + 1)2

)
and

g2(x) =
1

3 + x4



Indeed, for positive x, we get that g′1(x) = exp(−(x + 1)2)(−2(x + 1)) < 0 and g′2(x) =

−(3 + x4)−24x3 < 0, so both functions are strictly decreasing. We see that y1 ≤

exp
(
−(x + 1)2

)
is equivalent to x ≤

√
− log(y1) − 1 and that y2 ≤ 1/(3 + x4) is

equivalent to x ≤ (1/y2 − 3)1/4. Thus we simulate

x | y1, y2 ∼ Uniform
[
0,min

( √
− log(y1) − 1, (1/y2 − 3)1/4

)]
6. (a) We get

log (π (y1, . . . , yn, X1, . . . , Xn | θ))

= log

 n∏
i=1

((1 − θ) 1
√

2π
exp

(
−

1
2

y2
i

))I(Xi=0) (
θ

1
π(1 + y2

i )

)I(Xi=1)
=

n∑
i=1

[
I(Xi = 0)

(
log(1 − θ) −

1
2

log(2π) −
1
2

y2
i

)
+

I(Xi = 1)
(
log(θ) − log(π) − log(1 + y2

i )
)]

(b) We have

Pr[Xi = 1 | y1, . . . , yn, θ
′]

Pr[Xi = 0 | y1, . . . , yn, θ′]
=

Pr[yi | Xi = 1]
Pr[yi | Xi = 0]

·
Pr[Xi = 1 | θ′]
Pr[Xi = 0 | θ′]

=

1
π(1+y2

i )

1
√

2π
exp

(
−1

2y2
i

) · θ′

1 − θ′

Thus

wi = Pr[Xi = 1 | y1, . . . , yn, θ
′] =

1
π(1+y2

i )θ
′

1
√

2π
exp

(
−1

2y2
i

)
(1 − θ′) + 1

π(1+y2
i )θ
′

(c) We get

Q(θ | θ′) = Eθ′
[
log(π(y1, . . . , yn, X1, . . . , Xn | θ))

]
= Eθ′

 n∑
i=1

[
I(Xi = 0)

(
log(1 − θ) −

1
2

log(2π) −
1
2

y2
i

)
+

I(Xi = 1)
(
log(θ) − log(π) − log(1 + y2

i )
)]]

=

n∑
i=1

[
(1 − wi)

(
log(1 − θ) −

1
2

log(2π) −
1
2

y2
i

)
+

wi

(
log(θ) − log(π) − log(1 + y2

i )
)]

(d) From (c) we get that the value of Q(θ | θ′) is, except for an additive term not depend-
ing on θ,

log(1 − θ)
n∑

i=1

(1 − wi) + log(θ)
n∑

i=1

wi



Differentiating with respect to θ, setting to zero, and solving, gives

θ =
1
n

n∑
i=1

wi

Thus this value maximizes Q(θ, | θ′).

(e) The EM algorithm would start with a reasonable estimate for θ and for the Xi. Then,
one would iterate between computing the wi as in (b) and computing the θ as in (d)
until convergence.


