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1. (a) We get

nplx=3)ca(x=3|pn(p)=~1-p)yp=p~'(1-p*".

Thus the posterior is a Beta(2, 4) distribution.
(b) If x | p ~ Geometric(p) and p ~ Beta(a, 5), then

m(p | x) o< w(x | p)n(p) o< (1 = p)pp*~'(1 = py~' = p*'=1(1 = py™!

so p | x ~ Beta(e + 1,8 + x), and the Beta family is conjugate to the Geometric
distribution.

(c) If p has a uniform prior on [0, 1], the posterior given x is Beta(2,1 + x) and the
posterior given x and y is Beta(3, 1 + x + y). Thus

n(y | p)r(p | x)
n(p|xy)
Geometric(y; p) Beta(p; 2, 1 + x)
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When x = 3 this becomes
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2. Note first that Gamma(l, 8) = Exponential(8). As the Exponential distribution has a cumu-
lative distribution function that is easy to compute, we may simulate from Exponential(5)
by simulating U ~ Uniform[0, 1] and computing —log(U)/S. Thus, when « is an inte-
ger, we may simulate from Gamma(a, ), by simulating Uy, ..., U, ~ Uniform[0, 1] and
computing

1 a
3 Z: log(Uy)



3.

(a) We get
ap = Pr(xo=1]yo)
_ Pr(yo | Xo = I)PI'(X() = 1)
Pr(yo | xo = 1) Pr(xo = 1) + Pr(yo | xo = 0) Pr(xo = 0)
B 0.8-0.1 B i
0.8-0.1+0.3-09 35
Also,

Pr(x; =1 yo)
Pr(x; = 1| xo = 1)Pr(xo = 1| yo) + Pr(x; = 1| x9 = 0)Pr(xo = 0] yp)

8 8 43

and thus (assuming yo = 1 and y; = 0)

ar = Pr(x; =11y, )
Pr(y; | x; = D Pr(x; =11 yp)

Pr(y; | x; = 1)Pr(x; = 1 [yo) + Pr(yi | x; = 0)Pr(x; = 0 yo)
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(Full points were given to those who used the right formulas without completing the
numerical calculations.)

(b) We get
broy = Pr(yr|xro1=1)
= PrQyrlxr = DPr(xr = 1| x71 = D)+ Pr(yr [ xr = 0)Pr(xr =0 | x7_y = 1)
= 08:-04+03-0.6=0.5.
(c) Fori=0,...,T — 1, we can write
(X | Yo, ..o yr) o< (X | Yo o o s YOTR(Yig1s - Y7 | X0)
Thus we get

a(xi=11yo,....,y)0Qir1,...,yr | xi=1)
Z}:oﬂ(xi =J 1Yo s YOTViz1s - Y7 | Xi = )
Clib,’
ab; + (1 —a;)(1 -b;)

mlxi=1]y0,...,Y1)




4.

(a) For the posterior we have

A((Ars s Ay B L X115+ -+ 5 Xm)
o 7T(X11,. « o s Xnm | /119“ A )ﬂ'(/lla- -~a/ln |ﬁ)ﬂ'(ﬁ)
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Thus the logarithm of the posterior density becomes, up to an additive constant,

n

2log(B) - 48+ )

i=1

4log(B) + 3log(A;) — BA; + i [log(/l,-) - /lix"f]}

j=1
= (m+3)Zlog(/l)—Z/l[Zx,]) ﬁz/l + (4n +2) log(B) — 48

(b) Fixing all values except A;, the logarith of the posterior becomes, up to an additive
constant,

(m+3)log(X) = 4; Y xij = B
j=1

From this we can read off that the conditional distribution to be used for A; in the
Gibbs sampling is

Gamma [m +4,6+ Z Xij
=1
Fixing all values except 5 we get

(4n + 2) log(B) - (4 +> 4B
i=1

from which we get that the conditional distribution for g is

Gamma (411 +3,4+ Z /l,-]
i=1
A Gibbs sampler for this model would initiate the simulation with reasonable values
for A4, ..., 4,,B: For example we could set

h=— Y,
j=1

B = 1zn:/1i
=

The algorithm would then iterate between simulating the A; and 3 according to the
conditional distributions found above.

and then



(c) We could extend the simulation by simulating values in the Gibbs sampler for all x;;
that are censored. Specifically, censored x;; should be simulated from the truncated
Exponential distribution with parameter A;, truncated so that x;; > 10. With the x;;
simulated in this way, the remaining Gibbs sampling steps could be performed as
above.

More formally, let c;; be the censored data, so that ¢;; = x;; when x;; < 10 and ¢;; = 10
when x;; > 10. The full posterior then gets an extra factor

n o m
H I[xij — Cij]l[c,-j<10]1[xij > 10]1[c,-_,:10].

i=1 j=1

Removing the factors not containing x;; from the posterior, we get that x;; = ¢;; when
Cij < 10 and
7T(xij | .. ) o I[)C,‘j > 10]/11 exp(—/lixij)

when ¢;; = 10. Thus, in the Gibbs sampling, any censored x;; should be simpulated
from an Exponential distribution with parameter A; truncated to be greater than or
equal to 10. In other words, one may simulate from an Exponential distribution with
parameter A; and then add 10.

(a) Assume you want to simulate from a density proportional to f(x) and that
f@ = e
i=1

for some non-negative functions g;(x), . .., g,(x). Define instrumental variables yy, . ..
with
yi | x ~ Uniform[0, g;(x)]

Then the joint density can be written

n

1—1 10 <y; < gi(x)
i gi(x)

LCXVRRSATRY [ PE) = | |10 <yi < g
i=1 i=1

Thus a Gibbs sampler will iterate between sampling the y; from the uniform densities
given above, and sampling x from the uniform distribution on the set

n

() sy < i)

i=1
(b) In this case, we can use
g1(x) = exp (—(x + 1)?)
and

1
g (x) = m



6.

Indeed, for positive x, we get that g (x) = exp(—(x + 1?)(=2(x + 1)) < 0 and g)(x) =
—(3 + x*724x* < 0, so both functions are strictly decreasing. We see that y; <
exp (—(x + 1)2) is equivalent to x < +/—log(y;) — 1 and that y, < 1/(3 + x*) is
equivalent to x < (1/y, — 3)!/4. Thus we simulate

x| y1,y2 ~ Uniform [0, min ( v=log(y1) = 1,(1/y, — 3)1/4)]

(a) We get
108 (T (Vs -« o Vi X1s s X | 6))
n 1 1 1(X;=0) 1 I(X;i=1)
) m@ (a-ogenl2) i) U
= Z]: [I(Xi =0) (log(l —6)— %log(Zﬂ) - %y?) +
I(X; = 1) (log(6) - log(x) - log(1 +y}))|
(b) We have
Pr(X; = 11y1,..., @1 Prly | Xi=1] Pr{X,=1]6] _ v ¢

- A . .= ' .= AR 1 ‘T_p
PrX; =01yi,...,v,, 0] Prly; | X; =0] Pr[X;=0]6] \/_276Xp(_§yi2) 1-6

Thus

1 /
w(1+7)

exp(-p7)d -0+

w,=Pr[X;=1]|y,...,y.,,0]= T
m(1+y?)

(c) We get

QO16) = Egllogr(y,....ymX1,.... X | 0))]

n

Z [I(X,- =0) (log(l —0) - %log(Zﬂ) - %y,?) +

i=1

= E,

10X, = 1) (log(®) ~ log(m) ~ log(1 +?))]]

= Yla-w _g -1 _1
= ;[(1 wl)(log(l 0) - 5 log(2m) 2yl~)+
w; (log(6) - log(r) — log(1 +y}))|

(d) From (c) we get that the value of Q(6 | &) is, except for an additive term not depend-
ing on 6,

log(1 — 6) Z(l —w;) + log(6) Z Wi
i=1 i=1



Differentiating with respect to 6, setting to zero, and solving, gives

1<
0:;;%

Thus this value maximizes Q(6,| ).

(e) The EM algorithm would start with a reasonable estimate for 8 and for the X;. Then,
one would iterate between computing the w; as in (b) and computing the 6 as in (d)
until convergence.



