Petter Mostad Applied Mathematics and Statistics Chalmers

Suggested solutions for MSA101 / MVE187 Computational methods for Bayesian statistics Exam 2 January 2018

- 1. (a) One may use rejection sampling: In fact one may use the uniform distribution on [0, 3] as a proposal distribution. The algorithm is then:
 - Generate uniform variables U_1 and U_2 on the interval [0, 1].
 - If $\pi(3U_1) < BU_2$ then store the sampled value $x = 3U_1$, otherwise return to the first point.
 - (b) As the area of the rectangle with baseline [0, 3] and height *B* is 3*B* and the area under the density π is 1, the probability of not rejecting the proposed value for *x* is 1/3B. This shows directly how the algorithm can be inefficient if *B* is large.
- 2. We get

$$\pi(x) = \int_0^\infty \pi(x \mid y)\pi(y) \, dy$$

=
$$\int_0^\infty y \exp(-yx) \frac{\beta^\alpha}{\Gamma(\alpha)} y^{\alpha-1} \exp(-\beta y) \, dy$$

=
$$\frac{\beta^\alpha}{\Gamma(\alpha)} \int_0^\infty y^\alpha \exp(-(x+\beta)y) \, dy$$

=
$$\frac{\beta^\alpha}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha+1)}{(\beta+x)^{\alpha+1}}$$

=
$$\frac{\alpha}{\beta} \left(\frac{\beta+x}{\beta}\right)^{-(\alpha+1)} = \frac{\alpha}{\beta} \left(1 + \frac{x}{\beta}\right)^{-(\alpha+1)}.$$

3. As $g_i(\theta \mid x)$ is the posterior corresponding to the prior $f_i(\theta)$, we get the corresponding prior predictive distribution $h_i(x)$ defined with

$$h_i(x) = \frac{\pi(x \mid \theta) f_i(\theta)}{g_i(\theta \mid x)}$$

where the θ will disappear from the expression on the right. Thus

$$\pi(\theta \mid x) = \frac{\pi(x \mid \theta)\pi(\theta)}{\pi(x)}$$

$$= \frac{\sum_{i=1}^{k} \pi(x \mid \theta)c_i f_i(\theta)}{\int \sum_{i=1}^{k} \pi(x \mid \theta)c_i f_i(\theta) d\theta}$$

$$= \frac{\sum_{i=1}^{k} c_i h_i(x)g_i(\theta \mid x)}{\int \sum_{i=1}^{k} c_i h_i(x)g_i(\theta \mid x) d\theta}$$

$$= \frac{\sum_{i=1}^{k} c_i h_i(x)g_i(\theta \mid x)}{\sum_{i=1}^{k} c_i h_i(x)}$$

$$= \sum_{i=1}^{k} \left[\frac{c_i h_i(x)}{\sum_{j=1}^{k} c_j h_j(x)} \right] g_x(\theta \mid x)$$

- 4. The difference lies in the interpretation. In a causal network, there is a possibility to "set" or "fix" variables, which is a different action from just observing it. When a variable is set, the conditonal distribution of the remaining variables correspond to the conditional distribution in the Bayesian network where the incoming edges to the set variable have been removed. If the network is not a causal network but only a Bayesian network, there is only a possibliity to observe variables, not to set or fix them.
- 5. (a) First, an initial reasonable value for x is simulated; call it x_0 . Then, for i = 1, ..., n,
 - Simulate *y* using the proposal density $q(y | x_{i-1})$.
 - Compute the acceptance probability

$$p = \min\left(1, \frac{f(y)q(x_{i-1} \mid y)}{f(x_{i-1})q(y \mid x_{i-1})}\right)$$

- Set $x_i = y$ with probability p, otherwise, set $x_i = x_{i-1}$.
- (b) Let K(x, y) denote the probability (density) that the chain has value y given that it has value x as the previous step. The detailed balance condition for a density f is then that we have, for all x and y,

$$f(x)K(x, y) = f(y)K(y, x)$$

If a Markov chain satisfies the detailed balance condition for a density f, it is fairly easy to see that f is a stationary distribution for the chain. If the Markov chain is defined by the Metropolis Hastings algorithm above, one can show that it satisfies the detailed balance condition for the density f. Thus, if it has a unique stationary distribution, it must be f.

(c) The general idea may be explained as follows: For each chain, remove the initially simulated values (the "burn-in") and make a "thinning" by selecting only each *k*'th

of the remaining values, for some k, so that one believes the values remaining after this are an approximate random sample from the density. As a check of whether this is true, one may compare the variability (e.g., the variance) within the values from each chain to the variability within the set of all the simulated values. If the latter is clearly greater, it indicates that the values from each chain to some extent depend on the starting value of the chain, and that convergence has not been reached.

6. (a) A Gibbs sampler would anternate between simulating μ given τ_1 and simulating τ_1 given μ , starting with some value for, e.g., τ_1 . When fixing τ_1 the posterior $\pi(\mu \mid x, \tau_1)$ can be found using conjugacy:

$$\begin{aligned} \pi(\mu \mid x, \tau_1) & \propto_{\mu} & \pi(\mu)\pi(x \mid \mu, \tau_1) \\ & \propto_{\mu} & \exp\left(-\frac{\tau_0}{2}(\mu - \mu_0)^2\right)\exp\left(-\frac{\tau_1}{2}(x - \mu)^2\right) \\ & = & \exp\left(-\frac{1}{2}\left(\tau_0\mu^2 - 2\tau_0\mu\mu_0 + \tau_0\mu_0^2 + \tau_1\mu^2 - 2\tau_1\mu x + \tau_1x^2\right)\right) \\ & \propto_{\mu} & \exp\left(-\frac{1}{2}\left((\tau_0 + \tau_1)\mu^2 - 2(\tau_0\mu_0 + \tau_1x)\mu\right)\right) \\ & \propto_{\mu} & \exp\left(-\frac{1}{2}(\tau_0 + \tau_1)\left(\mu - \frac{\tau_0\mu_0 + \tau_1x}{\tau_0 + \tau_1}\right)^2\right) \end{aligned}$$

so that

$$\mu \mid x, \tau_1 \sim \text{Normal}\left(\frac{\mu_0 \tau_0 + x \tau_1}{\tau_0 + \tau_1}, \frac{1}{\tau_0 + \tau_1}\right)$$

When fixing μ the posterior $\pi(\tau_1 \mid x, \mu)$ can also be found using conjugacy:

$$\pi(\tau_1 \mid x, \mu) \propto_{\tau_1} \pi(\tau_1)\pi(x \mid \mu, \tau_1)$$

$$\propto_{\tau_1} \tau_1^{\alpha - 1} \exp(-\tau_1 \beta) \cdot \tau_1^{1/2} \exp\left(-\frac{\tau_1}{2}(x - \mu)^2\right)$$

$$= \tau_1^{\alpha - 1/2} \exp\left(-\tau_1 \left(\beta + \frac{1}{2}(x - \mu)^2\right)\right)$$

so that

$$\tau_1 \mid x, \mu \sim \text{Gamma}\left(\alpha + \frac{1}{2}, \beta + \frac{1}{2}(x-\mu)^2\right)$$

(b) The algorithm to use is the EM algorith, with μ as the "augmented data". The full log posterior becomes (up to constants C_1 and C_2 not depending on τ_1)

$$\log (\pi(x \mid \mu, \tau_1)\pi(\tau_1)\pi(\mu))$$

$$= \log \left[\frac{1}{\sqrt{2\pi/\tau_1}} \exp\left(-\frac{\tau_1}{2}(x-\mu)^2\right)\tau_1^{\alpha-1}\exp(-\beta\tau_1)\exp\left(-\frac{\tau_0}{2}(\mu-\mu_0)^2\right)\right] + C_1$$

$$= \frac{1}{2}\log \tau_1 - \frac{\tau_1}{2}(x-\mu)^2 + (\alpha-1)\log \tau_1 - \beta\tau_1 + C_2$$

For the E-step, we then need to consider the distribution of μ for fixed x and fixed τ'_1 . We know from (a) that

$$\mu \mid x, \tau'_1 \sim \operatorname{Normal}(\mu_2, 1/\tau_2)$$

where $\mu_2 = \frac{\mu_0 \tau_0 + x \tau'_1}{\tau_0 + \tau'_1}$ and $\tau_2 = \tau_0 + \tau'_1$. Thus we get that $E_{\tau'_1}(\mu) = \mu_2$ and

$$E_{\tau_1'}(\mu^2) = Var_{\tau_1'}(\mu) + E_{\tau_1'}(\mu)^2 = 1/\tau_2 + \mu_2^2$$

So for the M-step, we get, up to a constant C_2 ,

$$Q(\tau_1, \tau'_1) = E_{\tau'_1} \left[\log \left(\pi(x \mid \mu, \tau_1) \pi(\tau_1) \pi(\mu) \right) \right]$$

= $\left(\alpha - \frac{1}{2} \right) \log \tau_1 - \frac{\tau_1}{2} \left(x^2 - 2x E_{\tau'_1}(\mu) + E_{\tau'_1}(\mu^2) \right) - \beta \tau_1 + C_3$
= $\left(\alpha - \frac{1}{2} \right) \log \tau_1 - \frac{\tau_1}{2} \left(x^2 - 2x \mu_2 + \mu_2^2 + 1/\tau_2 \right) - \beta \tau_1 + C_3$

We find the value of τ_1 maximizing this expression by differentiation, setting the result to zero:

$$\left(\alpha - \frac{1}{2}\right)\frac{1}{\tau_1} - \frac{1}{2}\left(2\beta + x^2 - 2x\mu_2 + \mu_2^2 + 1/\tau_2\right) = 0$$

The result is

$$\tau_1 = \frac{2\beta + x^2 - 2x\mu_2 + \mu_2^2 + 1/\tau_2}{2\alpha - 1}$$

In summary, the EM algorithm starts with a reasonable value for τ_1 . Then for each iteration, μ_2 and τ_2 are computed accoding to the formulas above, and then τ_1 is computed according to the formula directly above.

7. The algorithm to use is the Viterbi algorithm. Roughly, it computes recursively the sequence x_0, \ldots, x_i maximizing the probability of the data y_0, \ldots, y_i , and ending with specific values for x_i . For each such probability, the value of x_{i-1} is also stored. When *i* reaches *T* the value of x_T in the sequence maximizing the probability can be found, and the previous values of the x_i in the chain can be found by tracing back using the stored values of the x_{i-1} for each *i*.

In more detail, define, for i = 0, ..., T and j = 0, 1,

$$P(i, j) = \pi(y_0, \ldots, y_i, x_0, \ldots, x_i)$$

where $x_i = j$ and the remaining x_0, \ldots, x_{i-1} are such that the probability is maximized. Define also, for $i = 1, \ldots, T$ and $j = 0, 1, Q_{ij}$ as the value of x_{i-1} in this sequence.

These values can now be computed recursively. First,

$$P(0, j) = \pi(y_0, x_0 = j) = \pi(y_0 \mid x_0 = j)\pi(x_0 = j).$$

To compute P(i, j) and Q_{ij} for i > 0, compute, for each possible value of x_i and each possible value of x_{i-1} , $\pi(y_0, \ldots, y_i, x_0, \ldots, x_i)$ where x_0, \ldots, x_{i-2} are such that the probability is maximized:

$$\pi(y_0, \dots, y_i, x_0, \dots, x_i) = \pi(y_i \mid x_i)\pi(x_i \mid x_{i-1})\pi(y_0 \dots, y_{i-1}, x_0, \dots, x_{i-1})$$

= $\pi(y_i \mid x_i)\pi(x_i \mid x_{i-1})P(i-1, x_{i-1}).$

For each x_i find the x_{i-1} maximizing the expression above, and set Q_{ij} equal to this x_{i-1} . Then set P(i, j) equal to the probability computed using this x_{i-1} .

In the end, the sequence x_0, \ldots, x_T maximizing the probability for the data can be found by first finding the *j* maximizing P(T, j) and then tracing back the values of the x_i using the computed Q_{ij} .

8. Sampling importance resampling is a way to obtain an approximate sample from a density $\pi(\theta)$ that is difficult to simulate from. One instead simulates a sample $\theta_1, \ldots, \theta_N$ from a proposal density $g(\theta)$ that is similar to $\pi(\theta)$ but easier to simulate from. Then, one resamples from this sample using probabilities

$$p_j = \frac{\pi(\theta_j)/g(\theta_j)}{\sum_{i=1}^N \pi(\theta_i)/g(\theta_i)}$$