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1. (a) One may use rejection sampling: In fact one may use the uniform distribution on
[0, 3] as a proposal distribution. The algorithm is then:

• Generate uniform variables U1 and U2 on the interval [0, 1].

• If π(3U1) < BU2 then store the sampled value x = 3U1, otherwise return to the
first point.

(b) As the area of the rectangle with baseline [0, 3] and height B is 3B and the area under
the density π is 1, the probability of not rejecting the proposed value for x is 1/3B.
This shows directly how the algorithm can be inefficient if B is large.

2. We get

π(x) =

∫ ∞

0
π(x | y)π(y) dy

=

∫ ∞

0
y exp(−yx)

βα

Γ(α)
yα−1 exp(−βy) dy

=
βα

Γ(α

∫ ∞

0
yα exp(−(x + β)y) dy

=
βα

Γ(α)
·

Γ(α + 1)
(β + x)α+1

=
α

β

(
β + x
β

)−(α+1)

=
α

β

(
1 +

x
β

)−(α+1)

.

3. As gi(θ | x) is the posterior corresponding to the prior fi(θ), we get the corresponding prior
predictive distribution hi(x) defined with

hi(x) =
π(x | θ) fi(θ)

gi(θ | x)



where the θ will disappear from the expression on the right. Thus
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4. The difference lies in the interpretation. In a causal network, there is a possibility to "set"
or "fix" variables, which is a different action from just observing it. When a variable is
set, the conditonal distribution of the remaining variables correspond to the conditional
distribution in the Bayesian network where the incoming edges to the set variable have
been removed. If the network is not a causal network but only a Bayesian network, there
is only a possibliity to observe variables, not to set or fix them.

5. (a) First, an initial reasonable value for x is simulated; call it x0. Then, for i = 1, . . . , n,

• Simulate y using the proposal density q(y | xi−1).
• Compute the acceptance probability

p = min
(
1,

f (y)q(xi−1 | y)
f (xi−1)q(y | xi−1)

)
• Set xi = y with probability p, otherwise, set xi = xi−1.

(b) Let K(x, y) denote the probability (density) that the chain has value y given that it has
value x as the previous step. The detailed balance condition for a density f is then
that we have, for all x and y,

f (x)K(x, y) = f (y)K(y, x)

If a Markov chain satisfies the detailed balance condition for a density f , it is fairly
easy to see that f is a stationary distribution for the chain. If the Markov chain is
defined by the Metropolis Hastings algorithm above, one can show that it satisfies
the detailed balance condition for the density f . Thus, if it has a unique stationary
distribution, it must be f .

(c) The general idea may be explained as follows: For each chain, remove the initially
simulated values (the "burn-in") and make a "thinning" by selecting only each k’th



of the remaining values, for some k, so that one believes the values remaining after
this are an approximate random sample from the density. As a check of whether this
is true, one may compare the variability (e.g., the variance) within the values from
each chain to the variability within the set of all the simulated values. If the latter is
clearly greater, it indicates that the values from each chain to some extent depend on
the starting value of the chain, and that convergence has not been reached.

6. (a) A Gibbs sampler would anternate between simulating µ given τ1 and simulating τ1

given µ, starting with some value for, e.g., τ1. When fixing τ1 the posterior π(µ | x, τ1)
can be found using conjugacy:
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When fixing µ the posterior π(τ1 | x, µ) can also be found using conjugacy:
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(b) The algorithm to use is the EM algorith, with µ as the "augmented data". The full log
posterior becomes (up to constants C1 and C2 not depending on τ1)

log (π(x | µ, τ1)π(τ1)π(µ))

= log
[

1
√

2π/τ1
exp

(
−
τ1

2
(x − µ)2

)
τα−1

1 exp(−βτ1) exp
(
−
τ0

2
(µ − µ0)2

)]
+ C1

=
1
2

log τ1 −
τ1

2
(x − µ)2 + (α − 1) log τ1 − βτ1 + C2



For the E-step, we then need to consider the distribution of µ for fixed x and fixed τ′1.
We know from (a) that

µ | x, τ′1 ∼ Normal(µ2, 1/τ2)

where µ2 =
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and τ2 = τ0 + τ′1. Thus we get that Eτ′1
(µ) = µ2 and
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So for the M-step, we get, up to a constant C2,
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We find the value of τ1 maximizing this expression by differentiation, setting the
result to zero: (
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The result is
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2α − 1
In summary, the EM algorithm starts with a reasonable value for τ1. Then for each
iteration, µ2 and τ2 are computed accoding to the formulas above, and then τ1 is
computed according to the formula directly above.

7. The algorithm to use is the Viterbi algorithm. Roughly, it computes recursively the se-
quence x0, . . . , xi maximizing the probability of the data y0, . . . , yi, and ending with specific
values for xi. For each such probability, the value of xi−1 is also stored. When i reaches T
the value of xT in the sequence maximizing the probaility can be found, and the previous
values of the xi in the chain can be found by tracing back using the stored values of the xi−1

for each i.

In more detail, define, for i = 0, . . . ,T and j = 0, 1,

P(i, j) = π(y0, . . . , yi, x0, . . . , xi)

where xi = j and the remaining x0, . . . , xi−1 are such that the probability is maximized.
Define also, for i = 1, . . . ,T and j = 0, 1, Qi j as the value of xi−1 in this sequence.

These values can now be computed recursively. First,

P(0, j) = π(y0, x0 = j) = π(y0 | x0 = j)π(x0 = j).



To compute P(i, j) and Qi j for i > 0, compute, for each possible value of xi and each pos-
sible value of xi−1, π(y0, . . . , yi, x0, . . . , xi) where x0, . . . , xi−2 are such that the probability is
maximized:

π(y0, . . . , yi, x0, . . . , xi) = π(yi | xi)π(xi | xi−1)π(y0 . . . , yi−1, x0, . . . , xi−1)
= π(yi | xi)π(xi | xi−1)P(i − 1, xi−1).

For each xi find the xi−1 maximizing the expression above, and set Qi j equal to this xi−1.
Then set P(i, j) equal to the probability computed using this xi−1.

In the end, the sequence x0, . . . , xT maximizing the probability for the data can be found
by first finding the j maximizing P(T, j) and then tracing back the values of the xi using
the computed Qi j.

8. Sampling importance resampling is a way to obtain an approximate sample from a density
π(θ) that is difficult to simulate from. One instead simulates a sample θ1, . . . , θN from a pro-
posal density g(θ) that is similar to π(θ) but easier to simulate from. Then, one resamples
from this sample using probabilities

p j =
π(θ j)/g(θ j)∑N
i=1 π(θi)/g(θi)


