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CAUTION: These overheads (and those for coming classes) only contain
part of the information covered in the lectures. You need to make your
own notes in addition!
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Frequentist issue 1: Interpretation

Example:

I We assume the numbers 4.2, 5.6 and 4.6 is a random sample from a
normal distribution with expectation µ and fixed variance 1.
As the numbers have mean 4.8, a 95% confidence interval for µ can
then be computed as[

4.8− 1.96 · 1√
3
, 4.8 + 1.96 · 1√

3

]
= [3.67, 5.93]

I A possible interpretation: If three numbers are resampled from the
distribution many times, the re-computed confidence intervals will
contain µ with probability 95%.

I Another common interpretation: The interval [3.67, 5.93] contains µ
with 95% probability.
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What is your attitude towards misinterpretations of the
confidence interval?

I People need to be better educated about the correct interpretation.

I I don’t care: As long as I as a mathematician/scientist compute and
present correct results, it is not my problem how it is interpreted.

I The difference between the two interpretations above is so small it is
unimportant.

I Other?
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Frequentist issue 2: Objectivity

Example:

I Assume we have a sequence of intependent trials each resulting in
success (1) or failure (0), with a probability of succes equal to p.
Assume we have observed the following data:

0, 1, 0, 0, 1, 0, 0, 1

We then make the estimate 3/8 = 0.375 for p. How ”good” is this
estimate?

I It is often said that an estimator that is unbiased is ”good”. Is this
estimator unbiased? It depends on which estimator we have used!

I Alternative 1: The estimator is: Make 8 trials, let X be the number
of successes, and compute p̂ = X/8.

I Alternative 2: The estimator is: Make trials until you have produced
3 successful trials, let X be the number of trials you needed to do,
and compute p̂ = 3/X .
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Continuation of example

I Exercise: Prove that the estimator in alternative 1 is unbiased (easy),
and that the estimator in alternative 2 is biased (more difficult).

I Our point here: If we use the biasedness of the estimator to judge
whether the estimate 0.375 is good, the result depends on which
estimator we are using, which depends on what went on in the head
(the plans) of the person doing the experiments.
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Continuation of example

I In the same situation as above, and the same observations, we want
to make a hypothesis test with H0 : p ≥ 0.6, and alternative
hypothesis H1 : p < 0.6. What is the p-value?

I To answer the question, we need to know which test statistic should
be used.

I Alternative 1: The test statistic is: Make 8 trials and let X be the
number of successes. Then, assuming p = 0.6, we get
X ∼ Binomial(8, 0.6). The possible values for X and their
probabilities are

0 1 2 3 4 5 6 7 8
0.001 0.008 0.041 0.124 0.232 0.279 0.209 0.090 0.017

We get that the p-value becomes 0.174; the sum of the probabilities
for X = 0, 1, 2, 3.
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Continuation of example

I Alternative 2: The test statistic is: Make trials until 3 successes
have appeared and let X the number of trials necessary. Then,
assuming p = 0.6, we get X ∼ Neg-Binomial(3, 0.6). The possible
values for X and their probabilities are

3 4 5 6 7 8 9 10 11
0.216 0.259 0.207 0.138 0.083 0.046 0.025 0.013 0.006

12 13 14 15 16,17,. . .
0.003 0.001 0.001 0.000 total 0.000

We get the p-value 0.095; the sum of the probabilities for
8, 9, 10, . . . .

I Note that if we use a significance level of 0.1, we will reject the null
hypothesis using the second test statistic, but not using the first test
statistic.
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Frequentist issue 3: Repeatability

Example: Stochastic modelling of oil reservoirs
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Frequentist issue 4: Contextual information

I Assume you want to find out if a coin is ”fair”, i.e., if the probability
p for heads is 0.5. You throw the coin 8 times and get heads 2
times. What do you believe about the probability p, and how certain
can you be?

I Assume you are a doctor who has received permission for a new
experimental surgical procedure. After 8 procedures, 2 are
successful. What do you believe about the probability p for a
successful procedure, and how certain can you be?

I Assume you work at a factory and you want to make a quality
control of a product. Out of 8 randomly chosen items, 2 were faulty.
What do you believe about the probability p that an item is faulty,
and how certain can you be?

I We saw above that what people generally want from a statistical
analysis are probabilistic predictions about future observations.
Generally, such predictions will need to take the context into
account. If p is simply regarded as an ”unknown parameter”, this
cannot be done.
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A Bayesian approach to statistics

I Our goal is to build stochastic models (probabilistic models) for the
real world, corresponding to our knowledge, and to use these models
to make probabilistic predictions.

I Probability is a feature of knowledge of the real world, not of the
real world itself.

I It is not useful to try to separate between ”unknown parameters”
and ”random variables” in these models: All are known/unknown to
some extent, and they should all be treated as random variables.

I The stochastic models are personal (as they model knowledge), but
rational persons with the same knowledge about some part of reality
should obtain the sams stochastic models for that part of reality.
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Example: The future success of a surgical procedure

I Note that predictions are key!

I Note that predictions might vary, in that they might use different
information. They are personal. There is no ”correct” prediction.

I You would model the probability p for a successful procedure as a
random variable, not as a parameter.

I You would model the probability density for p without taking into
account the experiment where 2 of 8 procedures succeded: The prior.

I You the compute the probaility density for p taking into account the
experment: The posterior.
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Statistics as learning, not ”estimation”

I Assume a stochastic model includes a variable X modelling some
real world quantity. Assume that quantity is observed to have the
value x . Then our updated model should be the stochastic model
conditioned on the information X = x .

I Technically, this conditioning will correspond to using Bayes
theorem, which is why this is called Bayesian statistics.

I In fact, all scientific learning is based on making observations. If a
scientific theory is represented as a stochastic model, the process of
scientific learning can be represented, to a certain approximation, as
a Bayesian update of this model.
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Example: Stochastic modelling of oil reservoirs

I The variable of interest might be the amount of oil, the data might
be geological observations along a trial well. Many other variables
describe the geological geometry.

I Not useful to estimate ”parameters” from data: Knowledge about
geological geometry will only increase somewhat with this particular
data.

I Important to take the residual uncertainty in parameters into
consideration, when predicting!

14 / 17



Frequentist vs Bayesian statistics

I The frequentist and Bayesian paradigms, when used on the same
problem, often yield similar or identical practical results. Why?

I The two methods should share the same likelihood model. A
frequentist approach for estimation followed by prediction in many
cases correspond computationally to a particular choice of prior
distribution on the parameters. When this prior corresponds to the
one used in the Bayesian analysis, the two approaches give identical
results.

I Example: Learning about a proportion p from repeated experiments.
A uniform prior on [0, 1] yields Bayesian results corresponding to
classical ones.
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Example: Intervals for expectations of normal distributions

I We assume data x1, . . . , xn is a random sample from a normal
distribution with expectation µ and known variance σ2 = 1.

I A frequentist analysis can compute from x1, . . . , xn a 95%
confidence interval, say [0.42, 0.73], for µ.

I People tend to interpret this as P(0.42 ≤ µ ≤ 0.73) = 0.95. (This
interpretation is wrong).

I However, if we assume a flat prior for µ and do a Bayesian analysis,
we derive at the 95% credibility interval [0.42, 0.73]. The correct
interpretation of this is exactly P(0.42 ≤ µ ≤ 0.73) = 0.95.

I Note: We here expand the set of probability distributions to include
also improper distributions, i.e., those that integrate (or sum) to ∞.

I For many, but not all, applications, a flat prior is reasonable.
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The Bayesian paradigm for statistics

I A set of variables (discrete and/or continuous) are chosen to
represent or describe some part of the real world, including

I Variables representing observed quantities.
I Variables representing things you want to know or predict.
I Ancillary variables.

I A function over all possible combinations of values of the variables is
established, representing the joint probability distribution.

I Some of the variables are observed (i.e., fixed) and the probability
model conditional on fixing these variables is found.

I Predictions for observable quantities are made from the conditional
model.
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